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Abstract

Introduction: Wind speed probability at a site has to be modeled for evaluating the energy generation potential of
a wind farm. Analytical computation of wind turbine capacity factor at the planning stage of a wind farm is very
crucial. Thus, the comparison of Weibull parameters estimation methods and computation of wind turbine capacity
factor are the focus of this paper.

Case description: Soda wind farm used in this case study is located in the Jaisalmer district of western Rajasthan in
India. Modeling of wind speed probability and power curve of wind turbines installed at Soda site were done for
analytically estimating the capacity factor of wind turbine. Estimated capacity factors were then compared with the
measured values of wind farm for validation of results.

Discussion and evaluation: Four numerical methods namely graphical, empirical, modified maximum likelihood,
and energy pattern factor were used for month-wise Weibull parameters estimation at hub height of 65 m. Power
curve of the wind turbine installed at site was modeled using eighth-degree polynomial. Coefficients of polynomial
were calculated from the combined use of linear least square method and QR decomposition using Gram-Schmidt
orthogonalization method.

Conclusions: Results show that the percentage error in annual capacity factor estimation using Weibull
parameters estimated from graphical, empirical, modified maximum likelihood, and energy pattern factor
methods were +9.98%, −1.59%, −1.22%, and −1.29%, respectively. Annual capacity factor that was estimated
using the Weibull parameters calculated from modified maximum likelihood method matched best with the
measured values. Graphical method gave the most erroneous results.
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Background
Wind power of a site changes with the change in seasons
and thus affects the capacity factor of wind turbines. Wind
speed distribution at hub height has to be month-wise
modeled for estimating the influence of atmospheric pa-
rameters on wind power. Wind speed probability model-
ing and estimation of wind turbine capacity factor for a
site are investigated by many researchers. Jangamshetti &
Rau (1999, 2001) used normalized power curves as a tool
* Correspondence: bkumarsin@yahoo.com
Centre for Energy and Environment, Rajasthan Technical University, Kota
324010, India

© 2015 Saxena and Rao; licensee Springer. This
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
for identification of optimum wind turbine generator pa-
rameters. Rehman and Ahmad (2004) analyzed wind data
for five coastal locations. Rocha et al. (2012) explained the
analysis and comparison of seven numerical methods for
finding the parameters for Weibull probability distribu-
tion. Jowder (2009) presented the statistical study of wind
speed and power at various heights. EL-Shimy (2010)
studied the problem of site matching of wind turbine
generator through improved formulation of capacity factor.
Huang and Wan (2011, 2012) determined a modular ap-
proach to enhance capacity factor computation of wind tur-
bine generators. Albadi and El-Saadany (2009, 2010, 2012)
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Figure 1 Suzlon S-66 wind turbine of 1.25 MW at the wind farm.
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proposed a novel method for estimating the capacity factor
of variable speed wind turbines. Chang et al. (2003)
investigated and compared monthly wind characteristics
and monthly wind turbine characteristics for four meteoro-
logical stations with high winds. Chang and Tu (2007)
analyzed monthly energy output and monthly capacity
factor of a wind farm. Ditkovich et al. (2012) proposed a
method for estimating capacity factor for stall and pitch-
regulated wind turbines. Hu and Cheng (2007) presented
a method for determining sites and wind turbine gener-
ator pairing.
This paper presents the month-wise graphical compari-

son between measured wind speed frequency and Weibull
wind speed probabilities estimated using four numerical
methods. It also uses a polynomial of eighth degree for
modeling wind turbine power curve. A method for esti-
mating the nth degree polynomial coefficients of wind
turbine power curve with combined use of linear least
square and QR decomposition using Gram-Schmidt or-
thogonalization through MATLAB is also presented. Coeffi-
cients of eighth-degree polynomial are used in the capacity
factor estimation from generic model given by Albadi
(2010). Estimated capacity factors are compared with
the measured capacity factor of a wind turbine working at
Soda site, for validation of results.
Case description
Details of the wind farm studied
Wind farm located at Soda site in the Thar desert region
of western Rajasthan, India is selected for this study. It is
in Jaisalmer district where May and June are hottest and
January is the coldest month. Rainfall is very low and mon-
soon winds that bring rains in India bypass this region.
Wind farm has twenty 1.25-MW capacity Suzlon-S66
turbines as shown in Figures 1 and 2. The total capacity
of wind farm is 25 MW and turbines are having hub
height of 65 m, cut-in speed vc of 3 m/s, rated speed vr of
14 m/s, and cut-off speed vf of 22 m/s (http://www.
suzlon.com/pdf/s66%20product%20brochure.pdf. Accessed
09 September 2014). Wind and meteorological data
measurement mast of 65-m height at Soda wind farm is
shown in Figure 3. Its specific position in the wind farm
is marked in Figure 2.
Figure 2 Locations of wind turbines and measurement mast in
the 25-MW wind farm at Soda.
Wind data modeling and analysis
Mean wind speed and standard deviation of grouped data
are defined by Jangamshetti and Rau (1999), Manwell et al.
(2009), and Bird (2003) as:

�v ¼
Xn

i¼1
fm við Þ � við ÞXn

i¼1
fm við Þ

ð1Þ
σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
fm við Þ⋅ vi−�vð Þ2Xn

i¼1
fm við Þ

vuut ð2Þ

where �v is the mean wind speed in meter per second,
σ is the standard deviation of wind speed in meter per
second, vi is the wind speed in meter per second at ith
bin midpoint, fm(vi) is the measured frequency of wind
speed for ith bin, and n is the number of wind speed
bins.



Figure 3 Measurement mast of 65-m height at Soda wind farm.
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Weibull probability density function and its cumulative
distribution function, used for describing the wind speed
frequency distribution of a site, are defined by Masters
(2004) as:

f vð Þ ¼ k
c

v
c

� �k−1
exp −

v
c

� �k
� �

ð3Þ

F vð Þ ¼ 1− exp −
v
c

� �k
� �

ð4Þ

where f(v) is the Weibull wind speed probability density
function at hub height, F(v) is the Weibull cumulative
distribution function, v is the wind speed in meter per
second, k is the shape parameter at hub height, and c is
the scale parameter at hub height.
Power available in the wind (Pw(v)) is expressed as

Pw(v) = 0.5ρAv3, where ρ is the air density in kilogram
per cubic meter, A is the rotor swept area in square
meter, and v is the wind speed in meter per second.
Wind power density (WPD) of a site that is based on
Weibull distribution is defined by Jowder (2009), Huang
and Wan (2012), and Chang et al. (2003) as:

WPD ¼
Z ∞

0
Pw vð Þf vð Þdv ¼ 0:5ρc3Γ 1þ 3=kð Þ ð5Þ

where Γ is a gamma function.
Root mean square error (RMSE) is based on the variation

between measured and estimated values. RMSE of wind
speed probability is defined by Rocha et al. (2012) and Bird
(2003) as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
fm við Þ−fc við Þð Þ2

� �s
ð6Þ

where fm(vi) is the measured wind speed frequency for
ith bin, fc(vi) is the estimated Weibull wind speed prob-
ability, vi is the wind speed at ith bin midpoint, and n is
the number of observations/bins. The percentage error
between measured and estimated value is calculated using
expression:

Error % ¼ measured value−estimated value
measured value

� 100:

ð7Þ

Estimation of Weibull scale and shape parameters
Graphical method (GM) (Johnson 1978) uses Weibull cu-
mulative distribution function and least square approxi-
mation for calculating the scale and shape parameters.
Using Equation 4 and on taking twice the logarithm of
each side, it becomes a form of straight line equation writ-
ten as y = ax + b where y = ln[−ln(1 − F(v))], a = k, x =
ln(v), and b = − k ln(c). For n pairs of (x, y) where all sum-
mations are from 1 to n, the values of a and b are
expressed as:

a ¼
X

xy −

X
x
X

y

n

X
x2 −

X
x

� �2

n

ð8Þ

b ¼ �y − a�x ¼ 1
n

X
y −

a
n

X
x: ð9Þ

Shape and scale parameters are then expressed as k = a
and c = exp(−b/k).
Empirical method (EM) uses shape and scale parameter

defined by Jangamshetti and Rau (1999) and Rocha et al.
(2012) as:

k ¼ σ=�vð Þ−1:086 ð10Þ
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c ¼ �v
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Modified maximum likelihood (MML) method uses
frequency distribution of wind speed. Shape parameter
is calculated by using numerical iterations and then scale
parameter is obtained by solving equation explicitly. Value
of shape parameter is around 2 for majority of sites and is
a good initial estimate for iterative process. Shape and
scale parameters are defined by Rocha et al. (2012) as:
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where vi is the wind speed at ith bin midpoint, n is the
number of bins, f(vi) is the frequency of wind speed
occurrence in bin i, and f(v ≥ 0) is the probability of wind
speed ≥ 0.
Energy pattern factor (EPF) is expressed as mean of

the sum of cubes of all individual wind speed considered
in a sample, divided by the cube of mean wind speed of
sample (Centre for Wind Energy Technology 2011):

EPF ¼ 1

�vð Þ3 �
Xn

i¼1
v3i =n

� �
ð14Þ

where vi is the wind speed in meter per second for ith
observation, n is the number of wind speed samples, and
�v is the monthly mean wind speed. The monthly wind
power density (WPD) is given by:

WPD ¼ 0:5ρ
Xn

i¼1
v3i =n

� �
ð15Þ

where ρ is the monthly mean air density at hub height
in kilogram per cubic meter. By substituting Equation 15
in Equation 14, EPF is expressed as:

EPF ¼ 1

�vð Þ3 �
WPD
0:5� ρ

� �
: ð16Þ

Shape parameter is calculated from EPF parameter using
an expression defined by Rocha et al. (2012) as:

k ¼ 1þ 3:69

EPFð Þ2 : ð17Þ

Scale parameter is then calculated by using the expres-
sion given in Equation 11.
Polynomial model of power curve for pitch-regulated
wind turbines
Relation between wind turbine electric power output
(Pe(v)) and wind speed (v) for pitch regulated wind turbines
are defined by Albadi (2010) as:

Pe vð Þ ¼ Pr �
0; v < vc or v > vf

	 

Pcinr vð Þ; vc ≤ v ≤ vrð Þ
1; vr ≤ v ≤ vf

	 

8<
:

ð18Þ

where Pr is the rated electrical power, and Pcinr(v) is the
turbine output power as a fraction of rated power be-
tween (including) cut-in wind speed vc and rated wind
speed vr. vf is cut-out wind speed.
There are many generic power curve models reported

in the literature for representing the non-linear region
between cut-in and rated wind speed of Figure 4. These
models are not accurate as they do not fit the manufac-
turer’s power curve data and only provide an approximate
model of power curve that has errors. The approach used
in this paper is to use a polynomial of eighth degree to
model manufacturer wind turbine power curve data
between cut-in and rated wind speed region.
A function is called polynomial of nth degree when it

is expressed in the form as

P vð Þ ¼ a0 þ a1vþ a2v
2 þ a3v

3 þ…þ anv
n ð19Þ

where a0, a1, a2, …, an are the constant coefficients of
polynomial function. The procedure of calculating coeffi-
cients of nth-degree polynomial by combined use of linear
least square and matrix factorization methods through
MATLAB are explained below.

Linear least square method
Consider given m sets of data (xi, yi) where i = 1,.., m and
the polynomial model that is fitted to data is of nth degree
expressed as:

P xð Þ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ…þ anx
n ð20Þ

where a0, a1, a2, …, an are the coefficients that are to be
found out. The m sets of data and polynomial P(x) are
expressed in matrix form as y = Xα where:

y ¼
y1
y2
⋮
ym

2
664

3
775; ð21Þ

X m; nþ1ð Þ ¼
1 x1 x21
⋮ ⋮ ⋮
1 xm x2m

⋯
⋱
…

xn1
⋮
xnm

2
4

3
5; ð22Þ



Figure 4 Power curve of Suzlon S66 1.25-MW pitch-regulated
wind turbine (Wind Power Program).

Figure 6 Monthly mean air densities at Soda wind farm.
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α ¼
a0
a1
⋮
an

2
664

3
775: ð23Þ

The coefficients a0, a1, a2, …, an, that best fit Equation
20 are found out by solving minimization problem,
where the objective function S is given by Press et al.
(2009) as:

S αð Þ ¼
Xm

i¼1
yi−

Xnþ1

j¼1
X ijαj

h i2
¼ y − Xαk k2: ð24Þ

Normal equations of least square problem can be
expressed in matrix notation as

XTX
	 


α ¼ XTy ð25Þ
Figure 5 Monthly mean temperature and monthly mean
pressure measured at Soda.
where XT is the transpose of matrix X. The algebraic
solution of Equation 24 is expressed (Demmel 1997) as

α ¼ XTX
	 
−1

XTy : ð26Þ
Solution from normal equations can have round-off

errors so QR decomposition of matrix X is done.

QR decomposition
QR decomposition is a matrix factorization method
(Embree 2010). It states that for any m × n matrix X with
m ≥ n, there exists a unitary m ×m matrix Q and an
upper triangular m × n matrix R such that

X ¼ QR : ð27Þ
Figure 7 Monthly mean wind speed measured at 65-m and
50-m heights.



Figure 8 Monthly mean wind power density measured at 65-m
and 50-m heights.

Saxena and Rao Renewables: Wind, Water, and Solar  (2015) 2:3 Page 6 of 11
On substituting Equation 27 in Equation 26, the
expression as explained by Demmel (1997) becomes:

α ¼ RTQTQR
	 
−1

RTQTy ¼ RTR
	 
−1

RTQTy ð28Þ
α ¼ R−1R−TRTQTy ð29Þ
α ¼ R−1QTy : ð30Þ

On solving Equation 30, the required coefficients of
polynomial Equation 20 are obtained. For computing
QR decomposition of matrix X, the MATLAB command
used is (Embree 2010):

Q;R½ � ¼ qr Xð Þ: ð31Þ
This application has a m × n matrix X with m much

larger than n. So, the QR decomposition produces a
Table 1 Monthly Weibull parameters estimated from four num

Months Graphical method Empirical method Modified

k c (m/s) k c (m/s) k

Apr 2011 1.7438 5.6863 2.1545 6.4137 2.0761

May 2011 2.3472 9.0708 3.3229 9.3500 3.2595

Jun 2011 2.0217 9.7378 2.9515 10.1866 2.9708

Jul 2011 2.0981 7.7550 2.7184 8.2294 2.6535

Aug 2011 1.8876 5.8166 2.6121 6.6079 2.5513

Sep 2011 2.1592 6.3457 3.0948 6.8103 3.0623

Oct 2011 1.5196 4.5302 1.8902 5.2394 1.7922

Nov 2011 1.5284 3.4343 1.9543 4.0376 1.8758

Dec 2011 1.5917 4.4552 2.1348 5.0925 2.0331

Jan 2012 1.6794 4.5200 2.1957 5.1489 2.1198

Feb 2012 1.8906 5.1810 2.3963 5.7532 2.3343

Mar 2012 1.7159 5.6665 2.0785 6.2319 2.0251
m ×m matrix Q that will require more storage than X
(Embree 2010). Also, columns n + 1,…,m of Q are surplus
as they multiply against zero entries of R.

QR decomposition using Gram-Schmidt orthogonalization
It is one solution to the above mentioned concern. This
procedure results in a skinny QR decomposition, X =QR,
where Q is m × n matrix, R is a n × n matrix, and Q*Q = I.
Here, Q* is the conjugate transpose matrix and I is n × n
identity matrix (Embree 2010). This algorithm can be
easily computed in MATLAB using command:

Q;R½ � ¼ qr X; 0ð Þ: ð32Þ
If m > n, only the first n columns of Q and the first n

rows of R are computed (http://in.mathworks.com/help/
matlab/ref/qr.html. Accessed 09 September 2014). If m ≤ n,
then, this is same as [Q,R] = qr(X).

Analytical estimation of capacity factor
Capacity factor (CF) (Masters 2004) is defined as the ratio
of average output power to rated output power over a
certain period of time. Monthly capacity factor (CFm) is
expressed as:

CFm ¼ monthly energy yield from wind turbine kWhð Þ
rated power kWð Þ � total hours in particular month

ð33Þ
and the annual capacity factor (CFa) is expressed as:

CFa ¼ annual energy yield from wind turbine kWhð Þ
rated power kWð Þ � total hours in a year

:

ð34Þ
Capacity factor of a particular wind turbine at a site can

be analytically estimated by using Weibull scale and shape
erical methods at hub height of 65 m

maximum likelihood method Energy pattern factor method

c (m/s) k c (m/s)

6.3507 2.1681 6.4137

9.2646 3.0793 9.3845

10.1471 2.8994 10.1942

8.1868 2.6637 8.2351

6.5499 2.6569 6.6044

6.7587 2.9802 6.8218

5.1967 1.9311 5.2428

4.0250 2.0225 4.0404

5.0567 2.2038 5.0924

5.1213 2.2430 5.1484

5.7274 2.4081 5.7527

6.2152 2.0626 6.2314



Figure 9 Comparison of estimated and measured wind speed probability at Soda for 65-m height (a–l).

Table 2 Comparison of RMSE of wind speed probability

Months Monthly
RMSE
(graphical)

Monthly
RMSE
(empirical)

Monthly
RMSE (MML)

Monthly
RMSE (EPF)

Apr 2011 0.0461 0.0443 0.0437 0.0445

May 2011 0.0352 0.0399 0.0397 0.0377

Jun 2011 0.0329 0.0354 0.0357 0.0350

Jul 2011 0.0366 0.0387 0.0382 0.0381

Aug 2011 0.0529 0.0502 0.0501 0.0507

Sep 2011 0.0509 0.0530 0.0531 0.0517

Oct 2011 0.0557 0.0521 0.0511 0.0527

Nov 2011 0.0787 0.0737 0.0722 0.0751

Dec 2011 0.0635 0.0602 0.0593 0.0611

Jan 2012 0.0617 0.0583 0.0576 0.0590

Feb 2012 0.0530 0.0516 0.0510 0.0518

Mar 2012 0.0416 0.0402 0.0398 0.0401

Average RMSE 0.05073 0.04980 0.04929 0.04979
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parameters of site, wind turbine speed parameters, and
coefficients of polynomial model for power curve in the
expression defined by Albadi (2010) as:

CF ¼ −e− vf =cð Þk þ
Xn

i¼1

�
ai � i� ci=k

	 
� Γ i=kð Þ

� γ vr=cð Þk ; i=k
� �

−γ vc=cð Þk ; i=k
� �� ��

ð35Þ

where Γ að Þ ¼ Gamma function ¼
Z ∞

0
ta−1e−tdt; and γ u; að Þ ¼

Incomplete gamma function ¼ 1=Γ að Þ½ � �
Z u

0
ta−1e−tdt:

Discussion and evaluation
Wind and meteorological data of Soda site for the dur-
ation from April 2011 to March 2012 were provided by
the owner company of wind farm. Monthly mean atmos-
pheric pressure and monthly mean temperature at Soda



Table 3 Suzlon S66-1.25-MW wind turbine power curve data (Wind Power Program; I-Rivera et al. 2009)

Wind speed (m/s) 3 4 5 6 7 8 9 10 11 12 13 14

Power (kW) 5 35 93 151 285 454 639 832 1,008 1,152 1,241 1,250

Power (Normalized) y 0.004 0.028 0.0744 0.1208 0.228 0.3632 0.5112 0.6656 0.8064 0.9216 0.9928 1

Table 4 Coefficients of eighth-degree polynomial fit

Coefficients Values

a0 7.2789524

a1 −9.0732954

a2 4.6960724

a3 −1.3208640

a4 0.22157098

a5 −0.0227409

a6 0.0014020

a7 −0.0000477

a8 0.000000689
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are shown in Figure 5 and their 1-year average values are
968.49 mb (1 bar = 105 Pa) and 28.88°C, respectively.
Monthly mean air density based on measured temperature
and pressure data is shown in Figure 6 and its 1-year aver-
age value is 1.118 kg/m3.
Monthly mean wind speed at 65-m and 50-m heights

are shown in Figure 7 and their 1-year average values are
5.86 m/s and 5.53 m/s, respectively. Monthly mean wind
power density at 65-m and 50-m heights are shown in
Figure 8 and their 1-year average values are 206.87 W/m2

and 181.71 W/m2, respectively.

Estimation of monthly Weibull function parameters for
Soda site
Table 1 shows the monthly Weibull parameters esti-
mated from graphical, empirical, modified maximum
likelihood, and energy pattern factor methods for Soda
at height of 65 m.

Graphical comparison of measured and estimated wind
speed probability
Figure 9a–l shows the month-wise wind speed probability
at site. They are calculated from shape (k) and scale (c)
parameters given in Table 1. Density histograms of month-
wise measured wind speed frequency at hub height are also
shown in each figure for comparison. A density histogram
is a histogram that has been normalized, so it will integrate
to one (Martinez and Martinez 2002).
It can be observed from Figure 9a–l that probability

curves using graphical method are not fitting the measured
wind speed frequency density histograms. Weibull prob-
abilities calculated from empirical, modified maximum
likelihood, and energy pattern factor methods are nearly
similar and overlapping each other. They are also repre-
senting better fit with the density histograms of measured
wind speed frequency.

Statistical analysis of four numerical methods
Table 2 gives the comparison of root mean square errors
(RMSEs) of wind speed probabilities and is calculated using
monthly Weibull parameters estimated from four methods
at hub height. It is observed that modified maximum likeli-
hood method has the lowest and graphical method has
highest value for 1-year average monthly RMSE at Soda
site. Thus, modified maximum likelihood method gives
better results in calculating Weibull function parameters
amongst the graphical, empirical, modified maximum like-
lihood, and energy pattern factor methods at Soda site.
Empirical and EPF methods have almost the same monthly
RMSE.

Eighth-degree polynomial fit to wind turbine power curve
data
Power curve data of Suzlon S66-1.25-MW pitch-
regulated wind turbine (http://www.wind-power-program.
com/download.htm. Accessed 09 September 2014; I-Rivera
et al. 2009) between cut-in and rated wind speeds are
shown in Table 3. Polynomial of eighth degree

P xð Þ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ a4x
4 þ a5x

5

þ a6x
6 þ a7x

7 þ a8x
8

ð36Þ

is used to fit the data given in Table 3. Linear least square
method and QR decomposition using Gram-Schmidt
orthogonalization are used for calculating coefficients
of polynomial using MATLAB. Coefficients of eighth-
degree polynomial after calculations are in Table 4.
Figure 10 shows the eighth-degree polynomial curve

and manufacturer’s power curve data of Suzlon S66 wind
turbine between cut-in and rated wind speeds. It can be
observed that actual data and eighth-degree polynomial
model both fit each other.

Measured data of wind turbine-9 at Soda
Various measured parameters of wind turbine-9 from
April 2012 to March 2013 are given in Table 5. Wind
turbine-9 data are used for comparison because measure-
ment mast and turbine-9 are located near to each other as
shown in Figure 2. So, it is a reasonably good assumption
that turbine-9 and measurement mast will have the same
wind availability.



Figure 10 Eighth-degree polynomial fit to Suzlon S66 power
curve between cut-in and rated wind speed.

Table 6 Monthly mean air density and correction factor
for density at Soda

Months Monthly mean air
density (kg/m3)

Ratio of monthly mean air density
and standard air density

Apr 1.106 0.903

May 1.093 0.892

Jun 1.086 0.887

Jul 1.092 0.891

Aug 1.099 0.897

Sep 1.11 0.906

Oct 1.113 0.909

Nov 1.125 0.918

Dec 1.152 0.940

Jan 1.164 0.950

Feb 1.156 0.944

Mar 1.122 0.916

Average 1.118 0.913
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Energy yield losses
Analytically, estimated values of monthly capacity factor
are to be corrected for machine non-availability, grid non-
availability, air density losses, and wake effect losses. The
estimated monthly capacity factor values are multiplied by
measured monthly machine availability and monthly
grid availability given in Table 5 for adjusting the losses
associated with machine non-availability and grid non-
availability. The wake effect losses are assumed as 5%
because the wind farm has turbines working in front of
the other as shown in Figure 2 and so the estimated
monthly capacity factor is multiplied by a factor of 0.95.
Table 5 Measured data of wind turbine-9 working at
Soda wind farm

Months Energy produced
(kWh)

Capacity
factor

Machine
availability

Grid
availability

Apr 2012 144,798 0.1609 0.9905 0.9826

May 2012 214,178 0.2303 0.9517 0.9516

Jun 2012 391,530 0.4350 0.8541 0.9813

Jul 2012 315,257 0.3390 0.8025 0.9606

Aug 2012 203,584 0.2189 0.977 0.9915

Sep 2012 94,305 0.1048 0.9965 0.9999

Oct 2012 44,503 0.0479 0.9701 0.993

Nov 2012 33,257 0.0370 0.9847 0.9932

Dec 2012 97,878 0.1052 0.9942 0.9952

Jan 2013 48,108 0.0517 1.0 0.9785

Feb 2013 94,453 0.1124 0.9891 0.992

Mar 2013 107,679 0.1158 0.9813 0.9784

Annual 1,789,530 0.1634 0.9576 0.9831
Suzlon S66 wind turbine has rated wind speed of 14 m/s.
It is evident from Figure 7 that monthly mean wind speed
at hub height is always less that 9.09 m/s during all the
months. The Figure 9a–l shows that wind speed never
reached 14 m/s during August to February months at Soda
site. Moreover, the probability of wind speed occurrence at
values equal to or more than 14 m/s during March to July
period is very low. So, it can be concluded that wind
turbines installed at the wind farm are operating below
their rated wind speed for most of the time. Majority of
the energy production is from ascending section of power
curve, which is between cut-in and rated wind speed re-
gion. This conclusion is used in calculating the air density
correction factor. Estimated monthly capacity factor is
Table 7 Monthly correction factors of estimated capacity
factors

Months Monthly correction factor

Apr 0.8348

May 0.7676

Jun 0.7059

Jul 0.6528

Aug 0.8256

Sep 0.8577

Oct 0.8315

Nov 0.8533

Dec 0.8839

Jan 0.8833

Feb 0.8796

Mar 0.8354

Average 0.8176



Table 8 Monthly capacity factors estimated using four
numerical methods

Months Estimated
CFm (GM)

Estimated
CFm (EM)

Estimated
CFm (MML)

Estimated
CFm (EPF)

Apr 0.1598 0.1919 0.1905 0.1913

May 0.4094 0.4465 0.4373 0.4465

Jun 0.4467 0.5149 0.5122 0.5139

Jul 0.3039 0.3363 0.3329 0.3373

Aug 0.1600 0.1910 0.1880 0.1894

Sep 0.1862 0.1969 0.1930 0.2003

Oct 0.1001 0.1189 0.1222 0.1167

Nov 0.0415 0.0476 0.0501 0.0453

Dec 0.0896 0.0966 0.0991 0.0937

Jan 0.0870 0.0976 0.0991 0.0957

Feb 0.1149 0.1308 0.1312 0.1303

Mar 0.1604 0.1810 0.1824 0.1818

Figure 11 Comparison of measured and corrected estimated
monthly capacity factors of wind turbine.
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corrected by multiplying it with the ratio of monthly mean
air density at site to standard air density of 1.225 kg/m3.
The values of ratio are given in Table 6 (Hau 2006). This
correction process also takes care of the differences in
air density between summer (May, June) and winter
(December, January) seasons.

Comparison of measured and corrected estimated
capacity factors
Monthly correction factors by considering machine non-
availability, grid non-availability, air density losses, and wake
effect losses are given in Table 7. Table 8 shows the esti-
mated monthly capacity factor values. They are calculated
using Equation 35 and data given in Tables 1 and 4. Table 9
shows the corrected monthly capacity factors. Corrected
monthly capacity factors are obtained by multiplying the
Table 9 Corrected capacity factors estimated using four
numerical methods

Months Corrected
CFm (GM)

Corrected
CFm (EM)

Corrected
CFm (MML)

Corrected
CFm (EPF)

Apr 0.1334 0.1602 0.1590 0.1597

May 0.3143 0.3428 0.3357 0.3428

Jun 0.3153 0.3635 0.3615 0.3627

Jul 0.1984 0.2195 0.2173 0.2202

Aug 0.1321 0.1577 0.1552 0.1564

Sep 0.1597 0.1689 0.1655 0.1718

Oct 0.0832 0.0989 0.1016 0.0970

Nov 0.0354 0.0406 0.0427 0.0387

Dec 0.0792 0.0854 0.0876 0.0828

Jan 0.0768 0.0862 0.0875 0.0845

Feb 0.1011 0.1151 0.1154 0.1146

Mar 0.1340 0.1512 0.1524 0.1519
estimated monthly capacitor factors given in Table 8 with
the monthly correction factors given in Table 7. It is to be
noted that measured wind speed frequency distribution
data are from April 2011 to March 2012 whereas measured
wind turbine-9 energy production data are from April 2012
to March 2013. Comparison between the measured and
corrected values of capacity factor are done assuming that
the wind profile of a site does not change significantly from
1 year to another year.
Figure 11 shows the graphical comparison of measured

and corrected monthly capacity factor values given in
Tables 5 and 9, respectively.
Corrected monthly capacity factors shown in Table 9

does not give a comprehensible result, as monthly wind
profile may vary from 1 year to another year. So, corrected
annual capacity factor of wind turbine are calculated and
then the percentage errors between the measured and cor-
rected values of annual capacity factor are obtained as
shown in Table 10. It is observed that percentage error in
annual capacity factor computation by using Weibull pa-
rameters estimated from MML method is −1.22%. It is the
lowest in comparison to graphical, empirical, and energy
pattern factor methods. Graphical method gave the most
erroneous results.
Table 10 Comparison between corrected annual capacity
factors along with percentage error

Methods of
estimating
Weibull
parameters

Corrected annual
capacity factor

Percentage error (comparing
with wind turbine-9 measured
annual CF of 0.1634) (%)

GM 0.1471 +9.98

EM 0.1660 −1.59

MML 0.1654 −1.22

EPF 0.1655 −1.29
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Conclusions
This paper analyzed wind characteristics, Weibull wind
speed distribution using four numerical methods, eighth-
degree polynomial modeling of wind turbine power curve,
and capacity factor estimation of wind turbines at Soda
site in the desert region of western Rajasthan in India.
The percentage error in annual capacity factor estimation
using Weibull parameters estimated from graphical, em-
pirical, modified maximum likelihood, and energy pattern
factor methods were +9.98%, −1.59%, −1.22%, and −1.29%,
respectively. Annual capacity factors calculated using
Weibull parameters estimated from modified maximum
likelihood method matched the measured values best and
the graphical method gave the most erroneous results.
Wind power density is highest in June and lowest in
November with measured values of 568.45 W/m2 and
49.03 W/m2, respectively. It shows a large variation due
to change in monthly weather conditions.
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