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Abstract 

Wind power is a cost-effective renewable source and can be smoothly integrated into power grid by incorporating 
adequate control strategies. The wind turbine prime mover, wind, is uncontrollable which makes it different from 
conventional generation. Therefore, it becomes very important to carry out investigations on the dynamic behavior of 
wind power-generating systems. In this paper, the state space model of the system is developed, optimal controllers 
using full-state feedback control strategy and suboptimal controllers using strip eigenvalue assignment method are 
designed to study the dynamic behavior of the system. Also, the optimal controllers are designed for various operat-
ing conditions using pole placement technique. Following the controller designs, the closed-loop system eigenvalues 
and dynamic response plots are obtained for various system states considering various operating conditions. The 
investigations of these reveal that the implementation of optimal controllers offers not only good dynamic perfor-
mance, but also ensures system dynamic stability.
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Background
The power system dynamics is essential to be understood 
for stable system operation. The optimization of the 
existing resources is necessary for the long term stable 
operation of the power system. Therefore, the dynamic 
performance of the wind turbine generator is of concern 
as it affects the dynamic stability of the system to which 
it is connected (Al-Duwaish et al. 1999). Focus of power 
system engineers is currently directed to the impact of 
wind power on variation in frequency of system. Research 
efforts concentrate on the ability of wind farms to con-
tribute in the frequency droop events by injecting active 
power to the grid (Khatoon et al. 2015; Attya and Hart-
kopf 2012; Chamorro et al. 2013). In George (2011), the 
impacts of wind power in the electricity grid are analyzed 
and a technique is presented for planning future elec-
tricity grids. In Esteban (2012), wind power uncertainty 
and its effects on power system adequacy are discussed. 

Nonlinear characteristics of wind turbine structure and 
generator operational behavior demand for high-quality 
optimal controller to ensure both stability and safe per-
formance (Aghdam and Allahbakhsh 2014). In Jackson 
et al. (2015) it is shown that the optimal state estimation 
can be effectively used to reconstruct unknown states 
of a plant influenced by both system and measurement 
noises. In David et al. (2013) a novel scheme is presented 
to give dynamic wind speed estimation by measuring 
rotor angular velocity for small wind turbines. A com-
promise can be achieved between loads and variation in 
power without any information of the damping of wind 
turbine (Yolanda et  al. 2012). In Epa (2011), a nonlin-
ear controller is developed for a wind turbine generator 
based on nonlinear, H2 optimal control theory. There-
fore, optimal controllers maximize the delivered electri-
cal power thus maximizing the global efficiency of the 
energy conversion system (Munteanu et  al. 2008). The 
wind turbine generator used is a synchronous generator 
(Mellow and Concordia 1969a) with a static excitation 
system. The transient stability signals derived from speed, 
terminal frequency, or power are superposed on the nor-
mal voltage signal of voltage regulator, which provides 
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additional damping to the oscillations (Rabelo et al. 2004; 
Thomas et  al. 1975). A wind turbine generator exhibits 
an unsteady input behavior mainly because of unsteady 
wind speeds. This unsteady behavior causes severe oscil-
lations. The transient stability signals derived from speed 
and terminal frequency are superposed on the normal 
voltage error signal of automatic voltage regulator, thus 
providing damping to these oscillations (Padiyar 2006). 
Also, the damping can be provided using an output feed-
back and strip eigenvalue assignment technique. The 
eigenvalues location affects the dynamics of the system. 
Therefore, it is necessary to locate the eigenvalues at 
some desired positions. The exact location of all eigenval-
ues at each operating point is difficult to attain. But a sat-
isfactory response for both transient and steady state can 
be obtained by placing all eigen values within a suitable 
region in complex s-plane (Kirk 1970; Sheih et al. 1986).

Wind power system under investigation
The proposed wind power system is a 1-MVA wind tur-
bine generator, extrapolated from 100  kW unit of the 
Energy Research and Development Administration 
(ERDA) wind energy program at NASA-Lewis Research 
Centre (Thomas et  al. 1975). The wind power system 
consists of a permanent magnet synchronous generator. 
The schematic diagram of the system under study is given 
in Fig.  1 (Al-Duwaish et  al. 1999; Khatoon et  al. 2015), 
attempts to regulate the speed and an apparent form 
of power. The extracted power from wind is converted 
into electrical power and fed to an infinite bus through a 
transmission link.

The system model is described in detail in author’s pre-
vious papers (Al-Duwaish et al. 1999; Khatoon et al. 2015; 
Khatoon et al. 2013, 2014, 2015a, b). Appendix explains 
the meaning and values of all abbreviations and constant. 
The structures of system vectors and matrices for the 
dynamic model of the system under consideration can be 
deduced using the following differential equations:

The zero damping is assumed due to electrical load 
characteristics; therefore

(1)(Pm − P)

(

1

s
M + D

)

= ω

(2)Pm − P = sMω

On solving the above equation, we get

which gives

Substituting the value of V̇R in above equation, we get

The 1.0 MVA unit is modeled to regulate the speed dur-
ing its normal operation, and this can be done by chang-
ing the pitch angle as a function of speed. The pitch blade 
control model is defined by a second-order differential 
equation (Hwang and Gilber 1978).

Taking Laplace transform

Let θ1 = θ (s) and 

(3)
(Pm − P)

M
= sω = ω̇

ω
377

s
= δ

(4)δ̇ = 377ω

E′
q = (−δK4 + Efd)

(

K3

1+ sK3T
′
do

)

(5)Ė′
q = −

K4δ

T ′
do

−
E′
q

K3T
′
do

+
Efd

T ′
do

Efd = (VR − EfdSE)(1/KE + sTE)

(6)Ėfd =
VR

TE
−

(SE + KE)Efd

TE

VR = (Vref − Vt − V3)

(

KA

1+ sTA

)

.

(7)V̇R = (Vref − Vt)
KA

TA

−
V3KA

TA

−
VR

TA

V3 = VR

(

sKF

1+ sTF

)

V̇3 = V̇R KF − V3.

(8)

V̇3 =
KFKA

TFTA

(Vref − Vt)−

(

KFKA

TFTA

+
1

TF

)

−

(

KF

TFTA

VR

)

(9)

τ 2p
d2θ(t)

dt
2

+ 2ξτp
d θ(t)

dt
+ θ(t) = K ′

ωω + K ′
vV + K ′

δδ.

τ 2p s
2θ(s)+ 2ξτpθ(s)+ θ(s) = K ′

ωω + K ′
vV + K ′

δδ

θ2 = θ̇1 = sθ
Fig. 1  Schematic diagram of the system under study
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where the wind speed V is the source of disturbance and 
contributes to the variation in the generated power, it is 
included in the disturbance matrix ‘T’. Rest of the terms 
are included in the system matrix A. Now the 7th state is 
therefore defined as

And the 8th state is defined as

The two states θ1 and θ2 are restructured for the blade 
pitch angle θ. The state space formulation yields the 
system matrix ‘A’, input matrix ‘B’, and the disturbance 
matrix ‘T’. With the help of state space model, the system 
matrices can be formulated as

Methods
The classical control theory expressed in frequency 
domain leads to a stable system and satisfies a set of more 
or less arbitrary requirements. Optimal control recog-
nizes the random behavior of the system and attempts 
to optimize response or stability on an average rather 
than with assured precision. The optimal control the-
ory provides a comprehensive, consistent, and flexible 
design approach. The classical response criteria such as 
step response are helpful in determining what values to 
use in quadratic cost function weighting matrices. These 
weighting factors have a powerful and direct effect on 
achieving desired response (Lewis and Syrmos 1995; Lee 
and Wu 1995).

τ 2p θ̇2 + 2ξτpθ2 + θ1 = K ′
ωω + K ′

vV + K ′
δδ

(10)θ̇2 =
K ′
ωω

τ 2p
+

K ′
vV

τ 2p
+

K ′
δδ

τ 2p
−

2ξτpθ2

τ 2p
−

θ1

τ 2p

(11)θ̇1 = θ2.

(12)θ ·2 =
K ′
ωω

τ 2p
+

K ′
δδ

τ 2p
−

θ1

τ 2p
−

2ξθ2

τp
.

A =



























0 377 0 0 0 0 0 0

(K1/M) ((kω − D)/M) (−K2/M) 0 0 0 Kθ /M 0

(−K4/T
′
do) 0 (−1/K3T

′
do) 1/T ′

do 0 0 0 0

0 0 0 (−(SE + KE)/TE) 1/TE 0 0 0

(−KAK5/TA) 0 (−KAK6/TA) 0 1/TA −KA/TA 0 0

(−KAK5KF/TATF) 0 (−KAK6KF/TATF) 0 (−KF/TATF) (−(TA + KAKE)/TATF) 0 0

0 0 0 0 0 0 0 1

K
′
δ/τ

2
p K ′

ω/τ
2
p 0 0 0 0 −1/τ 2p −2ξ/τp



























BT =

[

0 0 0 0
KA
TA

KAKF
TATF

0 0

]

TT =

[

0 KV
M 0 0 0 0 0

K ′
v

τ 2p

]

Optimal controller design using full‑state feedback control 
strategy
To design an optimal regulator, the modern control the-
ory requires the development of dynamic system model 
in state variable form. The regulator design of higher-
order nonlinear system model results in complex compu-
tations. Hence, the system equations are linearized about 
an operating point and then the linear state regulator 
theory is applied to obtain the desired control law. A lin-
ear time-invariant power system in state space is repre-
sented by following differential equations:

the control law is given by

for full-state vector feedback

for output feedback problem to minimize the perfor-
mance index

(13)ẋ(t) = Ax(t)+ Bu(t)+ Td(t)

(14)y(t) = Cx(t)

(15)u = −kx

(16)u = −ky

Subjected to system dynamic constraints Eqs.  (13) and 
(14), the augmented cost function for the performance 
index J is given by

Defining Hamiltonian as

Using linear state regulator approach, let u* be an 
admissible control that drives the system from an initial 
point x0, where * indicates that u = u*. For u* to be opti-
mal, the variables must satisfy the following relations:

(17)J =

∫ ∞

0

(xTQx + uTRu) dt.

(18)

J =

∫ ∞

0

[(xTQx + uTRu)+ �
T(Ax + Bu−x)] dt.

(19)H =
1

2

(

xTQx + uTRu
)

+ �
T(Ax + Bu).

(20)x∗ =
∂H

∂�

(

x∗, �∗,u∗
)



Page 4 of 12Ehtesham et al. Renewables  (2016) 3:1 

And the function H (x*, λ*, u*) must be minimum. Hence 
we get

From Eqs.  (18) and (19), the differential equation 
obtained in x* and λ* must satisfy

Assuming

Substituting for the costate in terms of x in Eqs. (24) and 
(25), we get

Substituting x* in Eq.  (25), the vector x gives the n × n 
matrix differential equation as

This matrix differential equation is called the Riccati 
equation (Ibraheem and Kumar 2004). For full-state feed-
back control strategy with the consideration of matrix Q 
as identity matrix, Eq. (29) can be rewritten in the com-
monly used form as

The solution of the matrix Riccati equation gives the 
matrix P, from which the controller gain is obtained as

Thus, the closed-loop system is defined as

where

Suboptimal controller design using strip eigenvalue 
assignment method
The linear systems are influenced by the locations of 
eigenvalues. Therefore, for a system to get good response, 
both in transient and steady states, it is necessary to 
locate all eigenvalues in desired positions. Due to approx-
imations, it is difficult to attain the exact locations of all 

(21)
�
∗ = −

∂H

∂x

(

x∗, �∗, u∗
)

.

(22)
∂H

∂u
= 0 = Ru+ BT

�

(23)U = −R−1BT
�
∗

(24)�
∗ = −AT

�
∗ − Qx∗

(25)x∗ = Ax∗ − BR−1BT
�
∗.

(26)� = p̃x

(27)px∗ = ATpx∗ − Qx∗

(28)x∗ = Ax∗ − BR−1BTpx∗

(29)p+ pA− pBR−1BT + ATp+ Q = 0.

(30)PA+ ATP − PBR−1BTP + CTC = 0.

(31)k = R−1BTP.

(32)ẋ = Gx

(33)G = A− Bk .

eigenvalues. Hence it is sufficient that all eigenvalues are 
placed within a suitable region in complex s-plane, using 
strip eigenvalue assignment method.

The linear quadratic control is used to optimize the 
closed-loop system, such that the eigenvalues lie within 
a vertical strip in the complex s-plane (Sheih et al. 1986). 
The output feedback controller is preferred as compared 
to the state feedback controller; since it is not possible to 
measure all the states of the system. The output feedback 
control law is stated as

In conventional optimal analysis, matrices Q and R are 
generally chosen as diagonal matrices. The system per-
formance can be improved by shifting the eigenvalues Λ 
(A − BG) of the closed-loop system to a desired region. 
From this, the weighting matrix R is set as an identity 
matrix with weight states for all inputs, and Q matrix 
must be given. For the system to be relatively stable, 
h ≥ 0. Then, the closed-loop system matrix

has all its eigenvalues lying on the left side of the −h ver-
tical line as shown in Fig.  2, where the matrix P̃ is the 
solution of the following Riccati equation:

The unstable eigenvalues of the closed-loop system 
(A + h1 in) are shifted to their mirror image position with 
respect to the −h vertical line (Sheih et al. 1986; Furuya 
and Irisawa 1999; Lee and Wu 1995). Assume two posi-
tive real values h1 and h2 to define an open vertical strip 
of (−h1, −h2) on the negative real axis as shown in Fig. 3, 
with Â = A+ h1In. The control law is changed to be

where C+ is the pseudo-inverse of C.

(34)u(t) = −Gy(t) = −GCx(t)

(35)AC = A− BGP̃

(36)

(A+ h1In)P̃ + P̃(A+ h1In)− P̃BR−1BTP̃ + Q = 0n

(37)u(t) = −Gy(t) = −GCx(t) = −µF̃x(t)

(38)G = −µF̃C+

Fig. 2  Vertical line in a complex s-plane
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And

Thus, the resulting optimal closed-loop system becomes

(39)

µ =
1

2
+

(h2 − h1)

2 tr(Â+)

=
1

2
+

(h2 − h1)

tr(BF̃)
.

(40)F̃ = R−1BTP̃.

(41)ẋ(t) = (A− BGC) x(t).

Optimal controller design using pole placement technique
Most of the conventional design approaches specify only 
dominant closed-loop poles, while the pole placement 
design approach specifies all closed-loop poles. The pole 
placement technique places the poles at any desired loca-
tions by means of an appropriate state feedback gain 
matrix. The MATLAB software is used for placing the 
poles at desired locations.

Results and discussion
In this work, three different optimal controllers are 
designed to study the impact of varying mechanical wind 
power input on the generated electrical power output. 
In this study, the reactive power is kept constant and 
real power is varied in the steps of 0.35, 0.65 and 0.8 up 
to a maximum value of unity. The optimal controller is 
designed using full-state feedback controller strategy. For 
the design of suboptimal controller, the eigenvalue strip 
assignment method is considered. Then, the optimal con-
troller using pole placement strategy is developed. The 
closed-loop system eigenvalues are explored as given 
by Tables 1, 2, and 3, for various controllers designed in 
this study. The inspection of these tables infers that the 
system stability is ensured at all operating points with 
all types of controllers. The stability margins are higher 
with the optimal regulators as compared to those offered 
by suboptimal controllers. The appreciable shifting of 
eigenvalues toward left of jω axis at Po = 0.35 as shown 
in Tables 1, 2, and 3, has led to increased stability margins 
as compared to other states. However, no appreciable 
change in optimal and suboptimal system eigenvalues is 
observed at other operating points.

The closed-loop system dynamic response plots are 
obtained for system state variables like angular dis-
placement of quadrature-axis of the generator with 
respect to infinite bus (δ), angular frequency of the sys-
tem (ω), voltage proportional to direct axis flux linkage 

Fig. 3  Complex s-plane with vertical strip

Table 1  Closed-loop system eigenvalues using optimal 
controllers

Po = 0.35 Po = 0.65 Po = 0.8 Po = 1.0

−20,020 −20,020 −20,020 −20,020

−3 + 8i −2 + 9i −2 + 9i −1 + 8i

−3 − 8i −2 − 9i −2 − 9i −1 − 8i

−21 −21 −21 −21

−17 −17 −17 −17

−2 −2 −3 −4

−1 −1 −2 −2

−1 −1 −1 −1

Table 2  Closed-loop system eigenvalues using suboptimal controllers

Po = 0.35 Po = 0.65 Po = 0.8 Po = 1.0

−325.63 + 32.47i −325.63 + 32.45i −325.63 + 32.45i −325.63 + 32.45i

−325.63 − 32.47i −325.63 − 32.45i −325.63 − 32.45i −325.63 − 32.45i

−20.61 −20.61 −20.61 −20.62

−2.53 + 9.44i −2.33 + 9.44i −1.61 + 8.73i −0.84 + 7.89i

−2.53 − 9.44i −2.33 − 9.44i −1.61 − 8.73i −0.84 − 7.89i

−2.19 −2.19 −2.91 −4.42

−1.39 −1.39 −2.12 −2.14

−1 −1 −1 −1
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(E′
q), and blade pitch angle (θ1), and its restructured 

state (θ2) as illustrated by Figs.  4, 5, 6, 7, 8, 9, 10, and 
11. The values of rising time, settling time with optimal, 
suboptimal controller and pole placement technique 
are compared for varying system operating conditions 
are studied. The response plots obtained at Po  =  1.0 
for various states of the system, using various con-
trollers are shown in Figs.  4, 5, 6, 7, and 8. From the 
response plots, it is revealed that both optimal and 
suboptimal controllers have stabilized the system per-
formance. Moreover, the controllers designed based on 
pole placement technique offer an improvement in the 

Table 3  Closed-loop system eigenvalues using optimal 
controllers based on pole placement technique

Po = 0.35 Po = 0.65 Po = 0.8 Po = 1.0

−20,020 −20,020 −20,020 −20,020

−21 −21 −21 −21

−17 −17 −17 −17

−3 + 8i −2 − 9i −2 + 9i −1 + 8i

−3 − 8i −2 + 9i −2 − 9i −1 − 8i

−2 −2 −3 −4

−1 −1 −2 −2

−1 −1 −1 −1

Fig. 4  Dynamic response plots of Δδ

Fig. 5  Dynamic response plots of Δω
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settling time as compared to other controllers. Further, 
the responses at all operating conditions settle down 
to steady-state value. The investigations are also car-
ried out for ω considering variation in Po as shown in 
Figs. 9, 10, and 11. From the inspection of these plots, 
it is seen that as the value of Po increases, the settling 
time is decreasing. The same argument is supported by 
Table 4. The inspection of rising time and settling time 
in Table 4 reveals that the optimal and suboptimal con-
trollers offer response plots has comparable rising and 

settling time, whereas the controllers designed using 
pole placement technique has resulted in a consider-
able improvement change, when compared to those 
obtained with other controllers

Conclusions
In the present work, optimal and suboptimal control-
lers are designed to study the dynamic performance of 
the wind turbine generator model at different operating 
conditions. As the system dynamic model is not stable, 

Fig. 6  Dynamic response plots of ΔE ′q

Fig. 7  Dynamic response plots of Δθ1
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pole placement technique is applied to place the poles of 
the system in stable region. The dynamic response plots 
and closed-loop eigenvalues are obtained. The designed 
controllers ensured the closed-loop system stability 
in the study. Furthermore, the impact of wind power 
on frequency of the system is seen visible. The various 

controllers designed in the work are found to exhibit 
their effect under various operating conditions.

To study the impacts on power generated with the 
variation in wind speed and hence power, the system 
is investigated at different operating conditions cor-
responding to different real power values, keeping the 

Fig. 8  Dynamic response plots of Δθ2

Fig. 9  Dynamic response plots of Δω at Po = 0.35
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reactive power as constant. The investigations show that 
with all controllers, the settling time is reduced as the Po 
is increased. However, it is interesting to note that the 
settling time has reverse trend at Po = 1 p.u. The trend of 

the peak shows a considerable improvement, when the 
dynamic responses obtained using optimal controller 
and suboptimal controller are compared with pole place-
ment technique.

Fig. 10  Dynamic response plots of Δω at Po = 0.65

Fig. 11  Dynamic response plots of Δω at Po = 0.8
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Appendix
List of abbreviations

Eq′	� voltage proportional to direct axis flux linkage
ω	� angular frequency of the system
M	� moment of inertia
D	� damping coefficient
δ	� angle between q axis of the generator and infi-

nite bus
Po	� electrical output power
V	� wind speed
θ	� blade pitch angle
TA	� regulator time constant
KA	� regulator gain
SE	� saturation function
TF	� time constant of excitation system stabilizer
KF	� gain of excitation system stabilizer
A	� n × n system matrix
B	� n × m input matrix
T	� n × 1 disturbance matrix
ξ	� damping ratio
τp	� actuator time constant
θ1, θ2	� reconstructed states for blade pitch angle
VR	� regulator voltage
VT	� terminal voltage
K ′
ω, K

′
v , K

′
δ	� pitch angle regulation constants

The coefficients K1, K2, K3, K4, K5, and K6 are known 
as Heffron–Phillips constants. They depend on machine 
parameters and the operating conditions of the system. 
The Heffron–Phillip constants are defined as
K1 =  ∆Te/∆ δ│ E′

q—change in electrical torque for a 
change in rotor angle with constant flux linkages in d-axis
K2 =  ∆Te/∆ E′

q│δ—change in electrical torque for a 
change in d-axis flux linkages with constant rotor angle
K3—impedance factor
K4 = 1/K3(∆ E′

q/∆δ)—demagnetizing effect of a change 
in rotor angle

K5  =  ∆Vt/∆δ│ E′
q—change in terminal voltage with 

change in rotor angle for constant E′
q

K6  =  ∆Vt/∆ E′
q│δ—change in terminal voltage with 

change in E′
q for constant rotor angle (Mellow and Con-

cordia 1969b).

Numerical data
xd =  2.21, x′d =  0.165, xq =  1.064, M =  19.04, D =  0, 
T ′
do  =  1.942, xe  =  0.3, KA  =  400, TA  =  0.02, KE  =  1, 

TE =  1.3, KF =  0.03, TF =  1.0, SE =  0.64, K ′
v = −0.337, 

K ′
ω  =  −20.94, K ′

δ  =  −0.0055, τp  =  0.15, ξ  =  0.707, 
Kω = −3.3, Kθ =  0.118, KV =  0.337, V =  7.92, T =  4, 
Gu = 0.075.
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