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Effects of various types of graphite 
on the thermal conductivity and energy storage 
properties of ternary eutectic fatty acid‑based 
composite as phase change material
Eanest B. Jebasingh* 

Abstract 

Energy is the greatest challenge facing the environment. Energy efficiency can be improved by energy storage by 
management of distribution networks, thereby reducing cost and improving energy usage efficiency. This research 
investigated the energy efficiency achieved by adding various types of graphite (e.g., flake and amorphous) to 
organic-based ternary eutectic mixtures like capric acid (CA)–myristic acid (MA)–palmitic acid (PA)-based composite 
phase change materials (PCMs) under the assistance of ultrasonication to improve thermal properties for thermal 
energy storage. The graphite was surface modified under a Fresnel lens by using concentration of solar rays, then 
exfoliation of flake graphite by solar irradiation (xG-F) and exfoliation of amorphous graphite by microwave irradia-
tion (xG-A). For each type of graphite exfoliation, ternary eutectic mixtures with mass concentrations of 5 wt% were 
prepared. The structure, thermal energy storage properties, and thermal stability of the composite PCM were investi-
gated. Thermal conductivity of the samples in the liquid phase was measured using the transient line source method 
(KD2Pro). The thermal conductivity was increased by loading xG while energy storage properties were slightly 
decreased. Furthermore, CA–MA–PA + 5 % xG-F has a slightly modified phase change temperature and enthalpy of 
melting (Tm = 17.5 °C; ΔHm = 143.7 J/g) and freezing (Tf = 6.7 °C; ΔHf = 125.5 J/g); this PCM showed higher ther-
mal conductivity of 0.170 W/(m K), representing an increase of up to 114 % relative to the parent material. On the 
basis of the above results, xG-A was cheaper than xG-F, but they decrease the energy storage capacity according to 
DSC results obtained at 2 °C/min. CA–MA–PA/xG-F has more potential for use in low temperature energy storage 
applications.
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Background
Latent heat thermal energy storage (LHTES) has the 
advantages of high energy storage density and small 
temperature variation during the phase change process. 
LHTES has widely employed in various fields including 
condensation heat recovery, building energy conserva-
tion, temperature-regulating textiles, and solar energy 
system. Phase change materials (PCMs) used in LHTES 
are generally categorized as inorganic and organic. 

Inorganic PCMs are salt hydrates, salts, metals, and alloy, 
have a high heat of fusion, good thermal conductivity, 
cheap and nonflammable, but their applications are lim-
ited due to corrosive to metals, undergo supercooling 
and phase decomposition. Organic PCMs can be classi-
fied into two major categories: paraffin and non-paraf-
fin materials. Paraffin materials have been widely used 
owing due to desirable thermal characteristics, such as 
minimal supercooling, varied phase change temperature, 
low vapor pressure in the melt, good thermal, chemi-
cal stability and self-nucleating behavior (Sharma et  al. 
2009; Baetens et  al. 2010; Regin et  al. 2008; Kenisarin 
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2010). Among the organic PCMs evaluated fatty acids 
are promising and then paraffin-based materials fatty 
acid have suitable phase change temperature, high latent 
heat capacity and easy manufacturing from common veg-
etable and animal oils (Oró et al. 2012; Yuan et al. 2014a, 
b; Karaipekli and Sari 2008; Sari and Kaygusuz 2002; Li 
et al. 2011; Yanping et al. 2011; Karaipekli and Sarı 2010).

In spite of the desirable properties of organic-based 
fatty acid PCMs, they have the major drawback of low 
thermal conductivity that reduces the rate of heat stor-
age and extraction during the melting and solidifica-
tion cycles. Their thermal conductivity was increased 
up to 10  % by using an organic fatty acid surfactant 
such as 5 % sodium myristate, 5 % sodium palmitate, or 
5 % sodium stearate (Fauzi et  al. 2013). Some inorganic 
materials have high thermal conductivity e.g., graphite 
and carbon nanomaterials on addition of treated graph-
ite to the PCM increases their thermal properties and 
thermal conductivity (Ince et  al. 2015; Sari et  al. 2008; 
Sari and Karaipekli 2009; Zhang et al. 2013, 2014a, b, c, 
2015; Fang et al. 2010; Liu et al. 2014; Yuan et al. 2014a). 
Exfoliated graphite (xG) fabricated by exfoliation natural 
graphite has superior properties mechanical, electrical, 
and thermal properties (Fukushima et al. 2006). Paraffin/
exfoliated graphite (XGnP) is used to enhance the ther-
mal conductivity, latent heat, and heat conductivity of 
composite PCMs (Kim and Drzal 2009). PCMs with low 
temperature can be used for cold storage applications like 
transport temperature-sensitive foods, medical applica-
tions, refrigeration and biotechnology industries.

In this paper, exfoliated graphite was produced from 
flake graphite and amorphous graphite by treating with 
solar irradiation and microwave irradiation respectively. 
Then employed as loading content to ternary eutectic fatty 
acid for improving thermal properties. Then structural 
morphology, thermal stability, and thermal conductivity 
of the obtained PCMs were analyzed. Thermal storage 
properties of the composite PCMs were also investigated.

Methods
Materials
Capric acid (CA, 98 % purity), myristic acid (MA, 98 % 
purity), and palmitic acid (PA, 98 % purity) of analytical 
grade were bought from Alfa Aesar and Sigma Aldrich.  
- 320 Mesh flake graphite Purchased from Alfa Aesar and 
60 Mesh amorphous graphite from Loba chemie.

Preparation of exfoliated graphite
Surface treatment of graphite was initially done as shown 
in Fig.  1. Incoming solar radiation was focused by a 
Fresnel lens (100  mm diameter) to convert the graphite 
into a conductive material.

Exfoliation of flake (xG‑F)
Thermal exfoliation of flake graphite was performed by 
brief solar irradiation under a Fresnel lens and brief treat-
ment with nitric acid and potassium permanganate (30 
min for solar treatment on natural graphite then 3 min 
for exfoliation of graphite).

Exfoliation of amorphous (xG‑A)
Exfoliation of amorphous graphite was done by using a 
homemade microwave oven and brief treatment with 
nitric acid and potassium permanganate (150 min for 
solar treatment but they were able to under goes on 1.15 
min for exfoliation under microwave oven due to present 
of oxides).

Preparation of CA–MA–PA/xG
On the basis of the theoretical mass ratios of CA–MA–
PA ternary eutectic mixtures calculated from Eq. (1) (as 
discussed below), a series of ternary eutectic mixtures 
were prepared by heating CA–MA–PA (64.8:22.6:12.6) 
with different CA, MA, and PA contents at a constant 
temperature of 70  °C, then stirring at 1200  rpm with a 
magnetic stirrer (2MHL, REMI) to ensure the homo-
geneity of the mixtures, and slowly cooling to room 
temperature. The optimum mass ratio of CA–MA–PA 
to xG-F or xG-A for preparation of CA–MA–PA/xG 
was 95:5 and obtained under assistance of high speed 
ultrasonication.

Fig. 1  Flake graphite in a porcelain dish under a Fresnel lens
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Characterization
Analytical methods
The morphology of the xG-F and xG-A was observed 
by scanning electron microscopy (SEM, VEGA3 TES-
CAN) at room temperature. SEM images were obtained 
with an accelerating voltage of 5  kV and working dis-
tance of 12  mm. The thermal energy storage properties 
of CA–MA–PA and CA–MA–PA/xG were analyzed by 
differential scanning calorimetry (DSC, 200 F3, Maia, 
NETZSCH); the melting and heat storage behaviors of 
the pure PCM and composite PCMs were examined 
at 2  °C/min heating rate in the range of 0–40  °C under 
a constant flow of nitrogen. Thermogravimetric analy-
sis (STA 409 PL LUXX, NETZSCH) was carried out to 
determine the decomposition temperature.

Thermal conductivity analysis
Thermal conductivity of pure CA–MA–PA and CA–
MA–PA/xG was determined by using the transient line 
source method of the KD2Pro thermal conductivity ana-
lyzer (Decagon, USA). The sensor used a single needle 
(KS-1) with a diameter of 1.3 mm and a length of 60 mm.

Results and discussion
Mass ratio of CA–MA–PA ternary eutectic mixtures
A eutectic mixture of two or more fatty acids has a lower 
melting temperature (Oró et al. 2012; Yuan et al. 2014b). 
Equation (1) was developed by Li et al. (2011) and links 
the component mass ratios to the melting temperature. 
Binary eutectic mixtures (Yanping et al. 2011) were cal-
culated first through Eq.  (1), and they were near to the 
partial melting temperature. The theoretical mass ratio of 
each ternary eutectic mixture was thus calculated on the 
basis of Eq. (1):

where in Tm is the melting temperature of the mixture, 
Ti is the melting temperature of the initial substance, Xi 
is the mass of the initial substance, Hi is the latent heat of 
the initial substance (J mol−1), and R is the gas constant 
(8.315 J mol−1 K−1). Our main aim was to develop a PCM 
with a melting temperature below 20 °C (Oró et al. 2012); 
CA–LA in the mass ratio of 64:36 was obtained at Tm 
19.62  °C (Karaipekli and Sarı 2010), but MA–PA in the 
mass ratio of 60:40 was obtained at Tm 47.08  °C (Fauzi 
et al. 2013). From Eq. (1), CA–MA–PA with a mass ratio 
of 64.8:22.6:12.6 (i.e., by replacing the 36 mass ratio lau-
ric acid in CA–LA with MA–PA at a mass ratio of 60:40) 
was obtained at Tm 15.72 °C. The mass ratio of the actual 
ternary eutectic mixtures needed to be verified through 
experiments.

(1)Tm =

[

1

Ti

− Rln
Xi

Hi

]

 Indeed, the mass ratio of CA–MA–PA ternary eutec-
tic mixture 64.8:22.6:12.6 was obtained at Tm 17.7 °C with 
little deviation compared with the theoretical value. The 
discrepancy is due to the errors of the calculation for-
mula and the effect on PCM’s purity on the mass ratio 
and phase change temperature of eutectic mixtures. If 
there are several endothermic peaks in the DSC curve of 
a PCM, it means that the PCM is not a eutectic mixture. 
However, in this case the entire composite has a single 
endothermic peak which shows that the prepared mix-
ture is homogenous. Therefore, the CA–MA–PA ternary 
eutectic mixture is a good choice for thermal energy stor-
age for low temperature application.

Characterization of eutectic PCM composites
The morphology of the ternary eutectic PCM was 
observed by scanning electron microscopy (SEM, 
VEGA3 TESCAN) at room temperature. The samples 
were sputter coated with gold to increase their electri-
cal conductivity. SEM images were obtained at an accel-
erating voltage of 5  kV and working distance of 12  mm 
(Fig. 2).

Figure 2a shows a solar-treated exfoliated flake graph-
ite surface with petal-like layered structure. Figure  2b 
shows a microwave-treated exfoliated amorphous graph-
ite surface with a structure which is different from that of 
flake graphite. In both cases, the stucture is different to 
the worm-like structure reported by Wei et al. (2008) for 
microwave-exfoliated flake graphite surfaces. This result 
highlights the different effect of the treatment process on 
the resulting structure.

Thermal properties of phase change materials
DSC curves of CA–MA–PA and CA–MA–PA/xG were 
obtained at a heating rate of 2  °C/min (Fig.  3). Table  1 
reports the phase change temperatures of CA–MA–PA 
and CA–MA–PA/xG. Mixing the CA, MA, and PA to 
prepare a eutectic mixture is a more efficient method 
to decrease the phase change temperature than using 
individual components. As a result of the nature of the 
environment and nature of stirring times the melting and 
freezing temperatures for CA–MA–PA were measured 
as 17.7 and 8.4 °C, which differ from the theoretical cal-
culated temperatures. The melting and freezing tempera-
tures of CA–MA–PA/xG-F were 17.5 and 6.7 °C.

The melting temperature and freezing temperatures 
of CA–MA–PA/xG were slightly lower than those of 
CA–MA–PA because xG has higher thermal conductiv-
ity that accelerates the heat transfer rate of PCM from 
the outside to inside and decreases the phase change 
temperature. However, the composite PCM storage 
ability of CA–MA–PA/xG is decided by the content of 
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CA–MA–PA, which accounts for 95 wt% in CA–MA–
PA/xG composite.

Latent heats of melting and freezing were found to 
be 148.7 and 144.2  J/g for CA–MA–PA but 143.7 and 
125.5 J/g for CA–MA–PA/xG-F 5 % composite PCM. In 
composites containing amorphous graphite, they totally 
decrease the latent heat. In addition, the latent heats of 

melting of the composite PCMs are compared with those 
of other composite PCMs in Table 2.

Figures  4 and 5 show the phase change temperature 
of the composite PCM and a degree of supercooling, 
expressed by the difference between melting tempera-
ture and freezing temperature obtained from DSC 
curves. Figure  4 shows that with the increase of xG-F 
content, the melting points and freezing point of CA–
MA–PA/XG-F composites were gradually decreased. 
Therefore, the degree of supercooling is slightly 
increased by xG-F 5  % contents. In contrast, Fig.  5 
shows that CA–MA–PA/xG-A composites exhibit 
the opposite tendency, which causes a decrease in the 
degree of supercooling.

Thermal conductivity of composite PCM composites
The thermal conductivity of pure CA–MA–PA and CA–
MA–PA/xG in the liquid phase was determined by using 
the transient line source method of the KD2Pro thermal 
conductivity analyzer at room temperature. The thermal 
conductivities of the CA–MA–PA/xG composites were 
remarkably improved relative to CA–MA–PA PCM. As 

Fig. 2  SEM images of a xG-F and b xG-A

Fig. 3  DSC curve of CA–MA–PA and composite PCM

Table 1  Thermal properties of PCM

PCM Mass 
fraction (wt%)

Melting Freezing

T onset (°C) Latent heat (J/g) T onset (°C) Latent heat (J/g)

CA–MA–PA – 17.7 148.7 8.4 144.2

CA–MA–PA/xG-F 5 17.5 143.7 6.7 125.5

CA–MA–PA/xG-A 5 16.8 117.5 9.5 38.6
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shown in Table 3, the thermal conductivity of CA–MA–
PA PCM/xG composites with a mass fraction of 5 % were 
increased by 14 % by xG-F and 12 % by xG-A. By com-
parison, Yu et  al. (2013) reported that the thermal con-
ductivity of pure paraffin at 65  °C was k =  0.1504  W/
(m  K) and that addition of multi-walled carbon nano-
tubes caused only a marginal increase in the absolute 
value of thermal conductivity of 0.012  W/(m  K) at the 
highest loading of 4 wt%.

Thermal stability of composite PCM
The thermal stability of CA–MA–PA PCM compos-
ites was evaluated by means of simultaneous ther-
mal analysis (STA). Thus samples of approximately 
2–4  mg were heated in a nitrogen atmosphere from 
0 to 500  °C at a heating rate 10  °C/min. CA–MA–PA 
shows a peak at 283.5 °C and loading of xG-F increased 
the peak temperature to 288  °C. On the other hand, 
loading of xG-A in CA–MA–PA composites reduced 
the peak temperature to 283.0  °C. All the samples 
behaved similarly and showed that weight loss did not 
happen below 100 °C; 3.97 % of weight remained after 
heating at 500 °C (Fig. 6). It can be concluded that the 
prepared composite PCMs exhibit thermal stability at 
room temperature.

Table 2  Comparison of latent heat of melting CA–MA–PA/xG with another component in literature

CNT carbon nanotube, EG expanded graphite, EP expanded perlite

PCM Material Melting 
temp (°C)

Loading % Pure PCM  
latent heat (J/g)

PCM composite  
latent heat (J/g)

Effective 
ratio (%)

References

CA EG 27.80 20 172.42 132.64 76.9 Sari et al. (2008)

PA EG 60.88 20 194.45 148.36 76.29 Sari and Karaipekli (2009)

LA–PA–SA EP 31.8 45 151.6 81.5 53.75 Zhang et al. (2014c)

LA–MA–PA/VMT EG 30.6 2 151.6 72.7 47.95 Zhang et al. (2015)

LA–MA–PA EG 30.94 5.3 145.3 135.9 93.53 Zhang et al. (2013)

LA–MA–SA EG 29.05 7.69 140.9 137.1 97.30 Liu et al. (2014)

Paraffin xGnP 50.8 5 128.8 131.5 102.57 Liu et al. (2014)

PA–SA CNT 53.59 8 179 165 92.17 Zhang et al. (2014b)

CA–MA–PA EG 18.61 7.69 135.6 128.2 94.54 Yuan et al. (2014b)

CA–MA–PA xG-F 17.5 5 148.7 143.7 96.63 Current study

Fig. 4  Phase change temperature and degree of supercooling of 
CA–MA–PA/xG-F composites

Fig. 5  Phase change temperature and degree of supercooling of 
CA–MA–PA/xG-A composites

Table 3  Thermal conductivity of composite PCM

Sample xG loading content Reference 5 %

CA–MA–PA/xG-F Thermal conductivity W/(m K) 0.149 0.170

Increase rate (%) – 14.09

CA–MA–PA/xG-A Thermal conductivity W/(m K) 0.149 0.167

Increase rate (%) – 12.08
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Conclusions
CA–MA–PA composites loaded with xG-F and xG-A 
were prepared with the aid of sonication to afford PCMs 
with high thermal conductivity. The melting temper-
ate, freezing temperature, and latent heats of CA–
MA–PA/xG-F 95:5 were 17.5  °C, 6.7  °C, 143.7  J/g, and 
125.5  J/g respectively. In comparison, the latent heat of 
CA–MA–PA/xG composites were lower than those of 
CA–MA–PA. Exfoliated graphite increased the thermal 
conductivity of CA–MA–PA, and CA–MA–PA/xG-F 
5.0 wt% showed an increase in thermal conductivity by 
114  %. TGA tests revealed that the prepared composite 
PCM has a high thermal stability in the working temper-
ature range. Thermal storage and release rates were sig-
nificantly increased as a result of the increase in thermal 
conductivity. The results indicate that composite PCMs 
have great potential for use in low temperature heating 
and cooling applications.
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