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Assessing solar and wind 
complementarity in Texas
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Abstract 

As wind and solar power installations proliferate, power grids will face new challenges in ensuring consistent cover-
age from variable renewable resources. One option to reduce variability is to integrate the output from wind and 
solar facilities with dissimilar temporal profiles of output. This study measured the complementarity of wind and 
solar resources sited in various regions of Texas. This study modeled solar and wind power output using the System 
Advisory Model with solar data from the National Solar Radiation Database and wind data from the Wind Integra-
tion National Dataset Toolkit. Half-hourly power production was assessed based on resource location, plant size, 
hourly load, inter-annual variability, and solar array design for all sites. We found that solar and wind resources exhibit 
complementary peaks in production on an annual and daily level and that West and South Texas wind resources also 
exhibit complementarity. Pairings of West Texas wind with solar power or South Texas wind sites yield the highest firm 
capacity. Solar farms are better suited for providing power during summertime hours of peak demand, whereas wind 
farms are better for winter. Taken together, our results suggest that Texas renewable power production can be made 
more reliable by combining resources of different types and locations.

Keywords:  ERCOT, Electric reliability, Variable renewable energy, Firm capacity, Peak average capacity percentage, 
Wind and solar power siting
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Introduction
Wind and solar power now provide the least-cost options 
for electricity generation in windy and sunny regions 
of the USA, even before accounting for subsidies and 
environmental impacts (Lazard 2017). Wind and solar 
also yield substantial benefits for climate, air quality, 
and health when replacing fossil fuels (Jacobson 2008). 
However, the variable nature of wind and solar power 
production limits their ability to displace fossil fuels. 
Aggregating multiple intermittent generators whose out-
put differs temporally can reduce the uncertainty and 
variability of their output (Hart et  al. 2012). Reduced 
intermittency can be achieved by aggregating multiple 
wind farms (Kahn 1979) or by combining the output of 
wind and solar farms (Zhou et al. 2010).

In 2017, wind provided 17% of power generation on 
the Electric Reliability Council of Texas (ERCOT) grid, 

which covers most of Texas, while solar provided just 1% 
(ERCOT 2017a, b). Many analysts expect both of these 
sources could provide an increasing share of electricity as 
their costs have fallen (Lazard 2017) and as aging coal-
fired power plants close. In 2018 alone, four coal plants 
are closing in ERCOT. ERCOT provides a distinct testbed 
for analysis because it is relatively isolated from the inter-
connected power grids that supply electricity to most of 
North America.

The rapid evolution of generating resources in ERCOT 
raises the question of the extent to which variable output 
from solar and wind can replace the retiring coal. Since 
solar and wind power production vary with the weather, 
other sources or storage are needed to ensure power 
demand is fulfilled continuously.

One way to reduce the need for costly storage and for 
polluting fossil generation is to deploy wind and solar 
capacity in a way that minimizes the times when their 
power is unavailable. Previous studies have shown that 
in many areas solar and wind resources demonstrate 
anti-correlated peaks and valleys in intensity throughout 
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the day (Monfortia et  al. 2014). Alongside this natural 
resource complementarity at a given location, diversi-
fying the locations of these resources is an important 
component of wind/solar complementarity (Prasad 
et  al. 2007; Liu et  al. 2013; Shaner et  al. 2018). In addi-
tion, spreading out farms in certain regions results in 
an increase in the reliability of solar alone (LBNL 2009) 
and wind alone (Katzenstein et  al. 2010). In particular, 
wind production in northwest Texas has been shown to 
increase as the area of distribution increases (Katzenstein 
et al. 2010).

Taking advantage of complementarily of wind and 
solar resources as well as the natural complementarity 
of systems with large spread can lead to a greater abil-
ity to meet consumer demand. Including both wind and 
solar in ERCOT’s energy portfolio evens out production 
and reduces the number or hours where either resource 
cannot produce (Prasad et al. 2007). In addition, increas-
ing the area over which wind and solar plants are located 
means that production times are less correlated, enhanc-
ing the performance of forecasts (Hart et  al. 2012) that 
are crucial to power pricing and dispatch.

This study aims to identify locations and configurations 
of wind and solar facilities in ERCOT that would opti-
mize the magnitude and complementarity of their power 

production. To do so, we analyze temporal patterns and 
variability in expected power production from potential 
wind and solar farms in Texas, using metrics developed 
in past studies for other regions together with metrics 
specifically targeted to ERCOT. This study pulls together 
multiple metrics from the literature and compares them 
to the operational metric used by ERCOT to determine 
the reliability of wind and solar. It takes these metrics 
and applies them to a new region, using data from the 
National Renewable Energy Lab (NREL) to model wind 
and solar farm output.

Methods
Site selection
Five wind sites and seven solar sites were selected 
throughout Texas (Fig. 1). These locations represent cur-
rently existing wind and solar farms, since the feasibil-
ity of placing resources at these sites has already been 
demonstrated. We separated wind sites into three West 
Texas (non-coastal) sites and two South Texas (coastal) 
sites, because the regions differ in the magnitudes and 
seasonal and diurnal patterns of wind speed. Specifically, 
West Texas winds are stronger and peak in the spring and 
at nighttime, whereas winds along the South Texas Gulf 
Coast tend to peak with summer afternoon sea breezes.

Fig. 1  The twelve sites selected for this study. Wildorado Ranch, Buffalo Gap, and Sherbino 2 are classified as “West Texas wind” and Cedro Hill 2 and 
Peñascal as “South Texas wind” locations
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Solar data
The National Solar Radiation Database (NSRDB) pro-
vided by the National Renewable Energy Laboratory 
(NREL) estimates weather conditions at any point in the 
USA using the Physical Solar Model (PSM). The model 
takes satellite data from the Geostationary Operational 
Environmental Satellites (GOES) as input and calculates 
projected global horizontal irradiance (GHI) from cloud 
properties (Sengupta et al. 2015). It is worth noting that 
the validation for the PSM provided by NREL overesti-
mates model error, and corrected validations show that 
GHI estimates range from − 2.6 to 4.0% bias compared to 
measured data (Yang 2018a, b).

Half-hourly PSM raw weather data were accessed for 
years 2007–2013, and NREL’s System Advisor Model 
(SAM) was used to process these data into usable power 
outputs. We used 2012 as the base model year for calcu-
lations and considered the full 2007–2013 data for ana-
lyzing inter-annual variability and peak average capacity 
percentages. In conjunction with weather data from each 
of the seven selected solar sites, various solar array con-
figurations were used as inputs to SAM to create mod-
eled half-hourly power output throughout the year. 
As our base case, we assumed a 30  MW DC farm with 
single-axis tracking because that is the most widely used 
configuration for utility-scale solar in the USA (Bolinger 
et al. 2017). Dual-axis and fixed-tilt systems were consid-
ered as sensitivity cases, since dual-axis has been used to 
boost output at some Texas farms and fixed-tilt provides 
the cheapest available option.

Wind data
Data were extracted from NREL’s Wind Integration 
National Dataset (WIND) Toolkit to estimate power pro-
duction for each of the five wind sites every 5 min during 
years 2007–2013. The WIND Toolkit modeled weather 
conditions using the Weather Research and Forecast-
ing Model (WRF) model and then generated a 2-km-by-
2-km resolution grid of power production data for eight 
2-MW, 100-m hub-height wind turbines (Draxl et  al. 
2015). For each of the five sites, this power production 
dataset was scaled to represent a 60-MW wind farm and 
the data were aggregated to half-hourly resolution for 
wind power output.

Metrics for analysis
Since the purpose of this study was to assess the com-
plementarity of renewable resources across the sites, 
both the power production capabilities and the resource 
variability of pairs of sites were assessed. The goal was 
not only to maximize raw production, but to maximize 
reliable production by accounting for temporal synergy 

between different sites. To do this, metrics used in the 
analysis were grouped into three categories: total genera-
tion, which represents total power production regardless 
of timing; variability, which represents the fluctuations of 
power output over the year; and reliability, which com-
bines capacity and variability to measure how much 
power can be relied upon to be available at least a cer-
tain percentage of the year. The statistical metrics used to 
assess these measures are described below.

Metrics for total generation
A widely used measure of a plant’s generation output is 
capacity factor, which is the average power output over 
the maximum possible power output (the nameplate 
capacity) over a period of time. Facilities located at sites 
with strong wind or solar resources, or using best avail-
able technologies such as dual-axis tracking in the case of 
solar, will tend to have higher capacity factors.

Metrics for variability
Variability of power output was quantified by the coef-
ficient of variance (COV; the ratio of the standard 
deviation to the mean). COV was computed based on 
half-hourly power output of a single site or the combined 
outputs of a pair of sites.

The Pearson correlation coefficient was used to assess 
the degree to which production rates of one resource 
supplement or complement the production of another. 
Negative coefficients indicate sites whose output is anti-
correlated in time and hence complementary.

Metrics for reliability
Two metrics were identified in the literature to assess the 
reliability of power production: firm capacity and peak 
average capacity percentage.

For firm capacity, we adopt the approach of Archer and 
Jacobson (2007). They pointed out that coal-fired power 
plants are typically available 87.5% of the time, after 
accounting for scheduled maintenance and unscheduled 
maintenance or outages. Thus, they defined the firm 
capacity to be the 87.5th percentile hourly capacity fac-
tor; in other words, the output that can be relied upon 
to be available at least 87.5% of the year. A visual expla-
nation of this metric can be seen in Fig.  6, where the 
intersection of the duration curve and the vertical line 
represents the minimum amount of power produced in 
the top 87.5% of production hours.

Peak average capacity percentage (PACP) is defined 
by ERCOT (ERCOT 2018) as a facility’s average capac-
ity factor over the top 20 load (i.e., power demand) hours 
for the peak season (either summer or winter). When 
seasonal PACPs are calculated, all summer values and all 
winter values for years where weather data are available 
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(up to 12  years) are averaged separately, resulting in a 
percentage that characterizes the resource’s ability to sat-
isfy summer and winter peak load. In this study, we used 
peak seasons from 2007 to 2013, the years for which 
weather data were available for the sites. The hours of 
peak load were determined based on hourly load data 
across the ERCOT grid.

Results and discussion
Single site analyses
Of the twelve locations selected for this study, the five 
wind sites exhibited the highest capacity factors in 2007–
2013 (Fig. 2). The three West Texas wind sites each had 
higher capacity factors than the two South Texas wind 
sites. The capacity factors for the solar sites were lower 
and more similar across Texas. This in part results from 
the fact that potential wind power output varies with the 
cube of wind speed, while solar output varies linearly 
with solar irradiance.

Next, we computed the average PACP for each site 
from 2007 to 2013 to assess average outputs during 
peak load hours (Fig.  2). We compare our calculations 
of PACP with the factors used by ERCOT in its assess-
ments of resource adequacy. There, ERCOT applies the 
following factors to wind and solar capacity when tally-
ing their contributions to total resource adequacy: 14% 
non-coastal wind, 59% coastal wind, and 75% solar for 
summer resources (ERCOT 2018); and 20%, 42%, and 
9.8%, respectively, in winter (ERCOT 2017a, b). ERCOT’s 
assessments assume that fossil and hydropower resources 
are fully available to supply peak demand in both seasons.

Tables  1 and 2 show each site’s specific PACP for the 
summer and winter, respectively. The solar sites had 
PACPs of 66% during summertime peak hours and 11% 
during wintertime peak hours. This is roughly in line with 
the fact that ERCOT applies factors of 75% in summer 
and 9.8% in winter in its resource adequacy assessments 
(ERCOT 2018). At individual sites, 2007–2013 average 
summertime PACP varied from 58.4 to 68.3%, while the 
interannual range was 12.0–23.5 percentage points. In 
winter, sites achieved 2007–2013 average PACP of 9.4–
13.3% and interannual ranges of 11.2–26.8 percentage 
points.

For the three WT wind sites, we computed PACP to 
average 19% in summertime peak hours and 42% in win-
tertime peak hours. Note that these levels are substan-
tially higher than the 14% and 20% factors applied by 
ERCOT in its resource adequacy assessments (ERCOT 
2017a, b). PACP ranged from 14.7 to 25.2% across indi-
vidual sites in the summer, and from 32.4 to 50.0% in 
winter. For the selected ST wind sites, we find PACPs to 
average 38% in summer and 48% in winter, compared to 
ERCOT’s 59% and 42% for summer and winter, respec-
tively. This raises concerns about the seasonality assumed 
by ERCOT for ST wind sites.

We next examine the monthly and diurnal cycles of 
power production for each site. Interannual ranges and 
averages of capacity factors, averaged over each of the 
three resource types, are shown in Fig.  3. The monthly 
capacity factors of the highest production WT wind, ST 
wind, and solar sites for years 2007–2013 are plotted in 
Fig. 4 and show the general spread of possible production 

Fig. 2  Solar and wind farm capacity factors overall, and during summer and winter peak hours, averaged over 2007–2013. Error bars show the 
range of annual values
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values and the interannual variability of resource avail-
ability at these representative locations. Notably, inter-
annual variability of solar production is greatest in the 
summer, whereas ST wind is variable in summer and 
winter and WT wind is most variable in spring and 
autumn.

To assess resource complementarity over the course 
of a day, aggregate half-hourly production values for 
each resource were compared for two model days: June 
21 (summer solstice) and December 21 (winter solstice) 
(Fig. 5). The average capacity factor each half-hour over 
years 2007–2013 is shown in Fig.  5. On June 21, WT 
wind and solar resources exhibited complementary 

production patterns over the course of the day, with solar 
production peaking in the daytime hours and WT wind 
production peaking at night. ST wind production peaked 
in the late evening, between the solar and WT wind peak 
production times, and remained lower than WT wind 
production for the duration of the day. On December 
21, ST wind and solar production values were lower than 
their summertime levels, while WT wind showed a flatter 
diurnal profile during winter than in summer.

The three categories of sites exhibit starkly different 
diurnal patterns in output. At the WT wind sites, output 
peaks late at night, around 23:30 CST. By contrast, output 
from the solar sites peaks just after noon, when the WT 

Table 1  Peak average capacity percentages for each solar and wind site during each summer

Site S2007 (%) S2008 (%) S2009 (%) S2010 (%) S2011 (%) S2012 (%) S2013 (%) Average (%)

SOLAR

 Alamo 1 62.6 56.1 68.3 73.2 73.3 69.2 72.6 67.9

 Alamo 5 61.9 59.2 71.6 74.0 74.1 66.8 70.2 68.3

 Alamo 7 73.2 49.7 69.4 69.6 69.6 69.8 67.9 67.0

 Holmes Rd 53.7 57.5 55.5 46.5 68.1 60.3 66.8 58.4

 Local Sun 57.7 57.0 65.7 61.5 66.7 61.4 69.0 62.7

 Roserock 70.5 63.1 71.9 73.1 76.1 71.5 54.1 68.6

 Webberville 59.0 57.6 69.8 66.4 72.0 64.3 71.4 65.8

W-TX WIND

 Buffalo Gap 16.8 21.7 17.5 3.3 11.4 17.4 14.8 14.7

 Sherbino 2 17.6 25.5 33.1 20.3 24.8 29.4 26.0 25.2

 Wildorado 18.6 18.3 23.7 9.3 20.1 15.8 23.9 18.5

S-TX WIND

 Cedro Hill 2 31.7 25.6 26.7 7.5 19.3 24.2 24.9 22.9

 Peñascal 46.2 60.7 65.8 24.8 55.9 53.7 63.6 53.0

Table 2  Peak average capacity percentages for each solar and wind site during each winter

Site W2007-8 (%) W2008-9 (%) W2009-10 (%) W2010-11 (%) W2011-12 (%) W2012-13 (%) Average (%)

SOLAR

 Alamo 1 8.1 10.1 16.4 5.1 11.5 12.4 10.6

 Alamo 5 9.5 10.7 14.7 6.1 2.6 23.1 11.1

 Alamo 7 10.1 14.4 25.8 9.0 3.1 17.1 13.3

 Holmes Rd 10.5 9.9 19.3 3.0 4.4 9.6 9.4

 Local Sun 8.4 15.0 19.2 9.0 4.4 9.8 11.0

 Roserock 4.2 14.3 13.4 5.7 1.3 28.1 11.2

 Webberville 7.9 16.4 12.8 5.8 3.5 10.9 9.6

W-TX WIND

 Buffalo Gap 43.7 32.1 50.4 65.8 59.5 48.6 50.0

 Sherbino 2 44.6 29.9 11.6 42.3 35.0 31.0 32.4

 Wildorado 66.8 52.8 25.3 24.1 68.6 18.7 42.7

S-TX WIND

 Cedro Hill 2 27.1 26.7 45.0 49.5 27.1 54.2 38.3

 Peñascal 45.9 43.5 72.4 77.7 43.0 58.5 56.8
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wind sites are near their daily lows. Meanwhile, output 
from ST wind sites peaks in late afternoon, around 16:00 
CST, and is lowest early in the morning.

Paired site analyses
While the contrasting temporal patterns described above 
for individual sites are suggestive of complementarity, 
paired site analyses allow for complementarity to be 
probed more directly. One indicator of complementarity 
of two sites is whether their output is inversely correlated 
over time, allowing one site to produce more power when 
the other is unavailable. Table 3 shows the Pearson corre-
lation coefficient for each pair of sites. As expected, pairs 
of solar sites were strongly correlated, with correlation 
coefficients ranging from 0.81 to 0.92. Pairs of wind sites 
were less strongly correlated. In particular, pairing a WT 
and a ST wind site led to correlation coefficients of just 
0.11–0.37 (Table 3). Pairs of WT wind sites had correla-
tion coefficients of 0.44–0.53, and the two ST wind sites 
had a correlation of 0.75 (Table 3). The lower correlation 
coefficients across regions illustrate the value of siting 
wind farms in different parts of the state.

Even better complementarity can be achieved by pair-
ing wind with solar, as each of these pairings had nega-
tive correlation coefficients. The average correlation 
between solar sites and wind sites was − 0.287, suggest-
ing a weak inverse relationship between solar produc-
tion and wind production. In particular, solar was more 
inversely correlated with the WT wind sites (− 0.31 to 

− 0.37) than with the most coastal of the ST wind sites, 
Peñascal (− 0.12 to − 0.15). Cedro Hill 2 had an inter-
mediate level of inverse correlation with solar.

As explained by Archer and Jacobson (2007), firm 
capacity provides an additional metric of complemen-
tarity by illustrating the minimum amount of power 
that can be guaranteed for a given percentile of hours 
per year. We assessed the firm capacity of each pair of 
sites and illustrate it in Fig. 6 for the pair of sites (Ros-
erock solar and Buffalo Gap wind) that had the great-
est firm capacity in 2012 at the 87.5 percentile level 
considered by Archer and Jacobson (2007). The power 
duration curves in Fig. 6 are plotted for each site indi-
vidually and taken together as a pair (in each case with 
total capacity assumed to be 60 MW), and the vertical 
line represents the 87.5% threshold. The combination of 
Roserock solar and Buffalo Gap wind power would out-
put at least 13.2% of its capacity for 87.5% of the hours 
of the year. By contrast, solar alone has zero firm capac-
ity at this threshold, since it is dark half the time. The 
Buffalo Gap wind site alone has a firm capacity factor of 
just 4% at the 87.5% threshold.

The highest and lowest ten firm capacities deter-
mined for single and paired sites are shown in Table 4. 
We exclude the solar–solar pairs, which inherently 
provide zero firm capacity. The highest firm capaci-
ties were exhibited by solar and WT wind pairs (spe-
cifically with pairs that included the Buffalo Gap wind 
site) and by WT and ST wind site pairs. Conversely, 
solar and ST wind pairings and single wind sites pro-
duced lower firm capacities, since these sites have both 

Fig. 3  Average monthly capacity factors for each resource type over the years 2007–2013. Circles display interannual minima and maxima
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Fig. 4  Monthly capacity factors for representative sites for Buffalo Gap (WT wind, top), Peñascal (ST wind, middle), and Alamo 5 (solar, bottom)
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lower capacity factors overall and less negative inverse 
correlations.

Solar configuration options
All of the analyses above assume single-axis tracking, 
the most widely used option for utility-scale solar farms. 
However, it is possible that a mix of alignments could 
prove complementary or that west-facing arrays could 
provide power during summer afternoon peak loads. 
To test how changes in solar array configuration might 
effect production and complementarity, five solar con-
figurations were considered: fixed-tilt systems with tilt 

equivalent to latitude pointed south (S), southwest (SW), 
and west (W); single-axis tracking from west to east; and 
dual-axis tracking. The highest production solar site, 
Roserock, was used as the model site in all of the fol-
lowing analyses, and the highest production wind site 
(Buffalo Gap) was used to measure changes in comple-
mentarity between WT wind and solar as the solar array 
configurations changed.

Production achieved by the different array configu-
rations was measured using capacity factor and PACP 
(Fig. 7). As expected, capacity factor was largest for the 
tracking configurations and lowest for the fixed-tilt 

Fig. 5  Half-hour average capacity factor for each site, 2007–2013, on June 21 (top) and December 21 (bottom)
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systems. Additionally, both summer and winter PACPs 
were higher for dual-axis tracking and single-axis track-
ing systems, respectively. For fixed-tilt systems, summer 
PACP rose and winter PACP fell as the system moved 
from south-facing to west-facing. Overall, the west-fac-
ing fixed-tilt system has the lowest total capacity factor 
of 18%, compared to 32% for the dual-axis tracking sys-
tem; however, in the summer during peak load hours, the 
west-facing fixed-tilt system had a PACP of 72%, nearly 
as high as the 74% for dual-axis tracking. Single-axis 
tracking costs about $0.15/WAC more than fixed systems 
(Bolinger et al. 2017), and dual-axis tracking systems are 
rarely deployed. Thus, the ability of west-facing fixed-tilt 
systems to achieve such high summertime PACP can be 
relevant in certain circumstances.

Next, to measure potential complementarity between 
solar configurations, correlation coefficients were cal-
culated between half-hourly production for the five 
array types as well as the Buffalo Gap WT wind location 
(Table 5). Single-axis tracking followed by the west-facing 
fixed-tilt array yielded the most strongly negative corre-
lation coefficients with Buffalo Gap, but the differences 
across the solar configurations were small. The greatest 
complementarity between two solar array types at the 
Roserock location was achieved by the west-facing fixed-
tilt system combined with the dual-axis tracking system. 
Pairing a west-facing and south-facing fixed-tilt system 
also yielded a relatively low correlation coefficient and 
hence better complementarity than other pairings.

Effects of array type on reliable combined production 
with a WT wind farm were measured with firm capacity 

Fig. 6  Duration curves of Roserock solar and Buffalo Gap wind sites’ separate and combined hourly power production and firm capacity (out of 
60 MW total capacity) at an 87.5% availability threshold

Table 4  Pairs of  sites with  the  ten highest and  ten lowest 
firm capacities, defined here as  the  amount of  capacity 
(out of 60 MW) available at least 87.5% of the time

Not shown are pairs of solar-only sites, which have firm capacity of zero

Site 1 Site 2 Firm 
capacity 
(MW)

Ten greatest firm capacities

 Roserock (So) Buffalo Gap (WT w) 7.92

 Roserock (So) Sherbino 2 (WT w) 7.55

 Peñascal (ST w) Sherbino 2 (WT w) 7.44

 Peñascal (ST w) Wildorado (WT w) 7.31

 Peñascal (ST w) Buffalo Gap (WT w) 7.17

 Alamo 5 (So) Buffalo Gap (WT w) 7.08

 Alamo 7 (So) Buffalo Gap (WT w) 7.04

 Alamo 1 (So) Buffalo Gap (WT w) 6.99

 Alamo 7 (So) Sherbino 2 (WT w) 6.98

 Webberville (So) Buffalo Gap (WT w) 6.88

Ten lowest firm capacities

 Holmes Rd (So) Cedro Hill 2 (ST w) 4.65

 Alamo 1 (So) Peñascal (ST w) 4.63

 Webberville (So) Peñascal (ST w) 4.63

 Holmes Rd (So) Peñascal (ST w) 4.45

 Cedro Hill 2 (ST w) Peñascal (ST w) 2.88

 Sherbino 2 (WT w) 2.77

 Buffalo Gap (WT w) 2.42

 Wildorado (WT w) 1.62

 Cedro Hill 2 (ST w) 1.59

 Peñascal (ST w) 1.31
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(Fig. 8). WT wind alone had the least firm capacity, fol-
lowed by similar capacity factors for all fixed-tilt systems 
combined with wind, leaving both single- and dual-axis 
tracking with similar firm capacities combined with WT 
wind. The firm capacity percentages followed a similar 
trend to the farms’ individual capacity factors, suggesting 
that the differences among solar configurations in com-
plementarity with wind are negligible.

Conclusions
West Texas wind produced the most total power annu-
ally, followed by South Texas wind production and then 
solar. Over the year, solar production is complementary 
with both WT and ST wind. WT wind paired with solar 
provided the highest levels of firm capacity at an 87.5% 
threshold. Accordingly, combining solar resources with 
WT wind might increase reliable power production on 
an annual basis. On a daily basis, however, WT wind, 

ST wind and solar all have different peak production 
times with ST wind peaking in the later afternoon, when 
demand for power is highest. This suggests that combin-
ing solar with ST wind might increase reliable power pro-
duction over the course of a summer day during hours of 
high demand.

Directly comparing the sites’ hourly production with 
times of greatest demand throughout the year yielded 
further insights. Solar production was the highest during 
summer hours when load on the ERCOT grid was high-
est, and WT and ST wind productions were the highest 
during winter peak hours. WT wind showed greater pro-
duction during both the summer and winter peak hours 
than the ERCOT estimate, suggesting ERCOT’s approach 
is conservative in this case. Our results also suggest a 
need for ERCOT to re-evaluate its estimates of ST wind 
availability during seasonal peak hours. We estimate that 
these coastal sites provide more output during winter 
peak load than summer, contrary to ERCOT’s assump-
tions in its resource assessments.

Comparisons of different solar configurations show 
that, though a west-facing fixed-tilt system yields less 
than half the output of a dual-axis tracking system, it 
can produce almost as much power during the peak load 
hours for summer. This suggests that a relatively low-cost 
system could play a valuable role in meeting summer 
peak demand.

Areas for further investigation include expanding 
the scope of measurements from seven sample sites to 
locations throughout the state in order to pinpoint spe-
cific locations that maximize complementarity (thus 

Fig. 7  Capacity factors of various configurations of solar arrays at Roserock for 2012 overall, and during peak load hours of summer and winter

Table 5  Pearson correlation coefficients of  half-hourly 
production between  the  Buffalo Gap wind site (right 
column) and  five potential configurations of  a  Roserock 
solar plant

Negative correlations are highlighted in italicized values

2-Tracking Fixed S Fixed SW Fixed W Wind

1-Tracking 0.98 0.90 0.86 0.82 − 0.36

2-Tracking 0.92 0.88 0.81 − 0.34

Fixed S 0.93 0.82 − 0.32

Fixed SW 0.96 − 0.34

Fixed W − 0.35
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reliability) and best meet demand over the course of each 
day. Further research could also explore alternatives to 
the ERCOT resource adequacy factors that might more 
fully characterize the reliable production potential of 
Texas renewables. These results might suggest ways to 
organize future renewables projects to maximize reli-
ability with minimal investment in expensive storage 
technologies. Such analyses will become increasingly 
important as the mix of Texas variable renewable elec-
tricity supply shifts from predominately West Texas wind 
to include more solar power and a broader mix of wind 
locations.
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