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Abstract 

The challenge of predicting wind speeds to facilitate site selection and the consistent operation of wind power 
plants in coastal regions is a global concern. The output of wind turbines is subject to fluctuations corresponding 
to changes in wind speed. The unpredictable characteristics of wind patterns introduce vulnerabilities to wind 
power facilities in wind power plants. To address this unpredictability, an effective strategy involves forecasting 
wind speeds at specific locations during wind power plant operations. While previous research has explored various 
machine learning algorithms to tackle these issues, satisfactory results have not been achieved, and Bangladesh faces 
challenges in this regard, especially in low-wind speed areas. This study aims to identify the most accurate machine 
learning-based algorithm to forecast the short-term wind speed of two areas (Kutubdia and Cox’s Bazar) located 
on the eastern coast of Bangladesh. Wind speed data for a span of 21.5 years, ranging from January 2001 to June 2022, 
were sourced from two outlets: the Bangladesh Meteorological Department and the website of NASA. Wind speed 
has been forecasted using 14 different regression-based machine learning models with a comprehensive overview. 
The results of the experiment highlight the exceptional predictive performance of a boosting-based ensemble 
method known as categorical boosting, especially in the context of forecasting wind speed data obtained from NASA. 
Based on the testing data, the evaluation yields remarkable results, with coefficients of determination measuring 
0.8621 and 0.8758 for wind speed in Kutubdia and Cox’s Bazar, respectively. The study underscores the critical 
importance of prioritizing optimal turbine site selection in the context of wind power facilities in Bangladesh. This 
approach can yield benefits for stakeholders, including engineers and project owners associated with wind projects.
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Introduction
Rapid economic growth and improved lifestyles have 
increased human energy consumption. However, reliance 
on conventional fossil fuels like natural gas, coal, and oil 

results in pollution and contributes to global warming. 
As these resources are non-renewable and finite, nations 
increasingly invest in renewable energy sources to meet 
their present and future needs. Wind energy, being read-
ily available and pollution-free, has emerged as a promi-
nent renewable energy solution (Anjum, 2014; Bharani & 
Sivaprakasam, 2022). Therefore, wind power plants are 
rapidly evolving globally to address the growing demand 
for cleaner and more sustainable power. In the last 
20  years, there has been a rapid growth in the installed 
capacity of wind power, as depicted in Fig.  1, which 
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showcases global yearly wind power generation. It is 
assumed that wind-generated power will top the renew-
able energy sector by producing around 7932.5 TWh 
of electricity in 2030 (Iea, 2023). Currently, appropri-
ate actions are being taken in several nations. However, 
for many countries, like Bangladesh, the contribution of 
wind power is quite minor.

In 2041, Bangladesh aims to achieve high-income 
country status, emphasizing the need for sustainable 
and uninterrupted power supply to drive industrializa-
tion. With a forecasted electricity demand of 82,292 MW 
in 2041, the country faces challenges due to deplet-
ing natural gas reserves and dependency on imported 
fuels. The current energy mix relies heavily on natural 
gas, and the depletion of reserves by 2028 poses a threat 
(Babu et al., 2022). Diesel imports for power plants and 
nuclear power plant limitations further complicate the 
quest for self-sufficiency. Moreover, Bangladesh, mini-
mizing emissions of greenhouse gases by 21.85% by 2030, 
faces the dual challenge of increasing energy consump-
tion and decreasing CO2 emissions to achieve Sustain-
able Development Goals (SDGs) by 2030 and advanced 
nation status by 2041 (Das et  al., 2020). The current 
energy mix of Bangladesh is natural gas 64.36%, fur-
nace oil 21%, coal 33.54%, coal 9.52%, solar 0.84%, hydro 
1.25%, and wind 0.01% (“Share of primary energy from 
wind” & Our World in Data, 2023). Embracing renew-
able energy practices becomes crucial for efficient energy 
utilization and environmental sustainability. The United 
States Agency for International Development (USAID), 
Bangladesh, and the Government of Bangladesh (GoB) 
collaborated to assist the National Renewable Energy 
Laboratory (NREL) to conduct a recent national wind 
resource assessment in Bangladesh. (Babu et  al., 2022). 

According to the evaluation document of NERL, Bangla-
desh has more than 20,000 km2 of land with a wind speed 
of 5.75–7.75  m/s, which leads to a gross wind potential 
of over 30,000 MW (Siddique et al., 2021). The findings 
prove that the entire coastline area, e.g., Cox’s Bazar, Pat-
enga, Teknaf, Kutubdia, Char Fassion, and Kuakata, falls 
into the zone that is commercially important for the pro-
duction of wind power by installing small and medium-
scale wind farms.

Therefore, it can be said that if the right laws, pro-
grams, and technological innovations are implemented, 
wind can be included as a key contributor to renewable 
energies to tackle the energy crisis (Siami-Namini et al., 
2018). However, wind energy is an intermittent renewa-
ble energy source (IRES) because it cannot be dispatched 
due to its fluctuating nature. Forecasting the wind speed 
of a location before constructing a wind power plant 
may be the answer to the unpredictability of wind speed. 
Moreover, accurate wind speed predictions during the 
operation of the wind could aid stakeholders in making 
vital decisions, such as regarding wind power storage or 
grid transmission activity (Shi et al., 2022). Thus, to iden-
tify optimal sites for wind energy plants and guarantee 
operational safety, researchers concentrate on developing 
precise predictions of wind speed (Babu et al., 2022).

A thorough study of the literature shows that there are 
two basic approaches for wind speed forecasting: the 
time horizon and modeling theory (as depicted in Fig. 2). 
Four sorts of wind speed predictions are possible in terms 
of time horizon, and they are as follows: very short-time 
(a few seconds), short-time (30 min–6 h), medium-time 
(6 h–1 day), and long-time (more than 1 day) (Babu et al., 
2022). Operational engineers, armed with predictions of 
wind speed from the short term up to the long term in 

Fig. 1  Annual electricity generation from wind (TWh)
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advance, can make a variety of decisions to optimize the 
performance and efficiency of wind energy operations. 
They can strategically optimize wind turbine operations 
by altering angles and speeds for maximal energy capture 
based on wind speed estimates available three hours in 
advance. They use energy storage based on anticipated 
wind conditions, distribute resources wisely, and effec-
tively integrate wind energy into the power grid (Yousuf 
et  al., 2019). Anticipated variations in energy produc-
tion inform financial planning, while safety protocols are 
implemented in advance of extreme weather. To guar-
antee the efficient and secure operation of wind energy 
systems, engineers also plan grid connections and imple-
ment environmental impact mitigation strategies during 
certain wind conditions (Santhosh et  al., 2020; Yousuf 
et al., 2019).

Similar to the time horizon, modeling theory is clas-
sified into four types of forecasting models: persis-
tence methods, physical models, conventional statistical 
models, and models based on artificial intelligence (AI) 
(Chang, 2014). The persistence method seems to be 
more accurate than other wind forecasting techniques in 
very short-term forecasting. However, as the prediction 
horizon expands, the persistence method’s accuracy will 
rapidly decline. Physical models are good for long-term 
forecasting, but they are time-consuming due to the 
numerous computations required. Statistical models are 
used to ascertain the mathematical relationship between 
inputs and outputs under the assumption of linear cor-
relations. Despite their extensive use in the research, 
their effectiveness fell short of expectations because they 
were ineffective in identifying nonlinear interactions 
(Chang, 2014). A large subset of AI is machine learning 
(ML), which aims to train the computer to comprehend 
situations and perform actions that are both advanta-
geous and beneficial to the environment after training it 

on a previously stated dataset (Jagdale et  al., 2022). An 
examination of existing literature reveals that ML algo-
rithms can be categorized into supervised, unsupervised, 
semi-supervised, and reinforcement learning categories 
(Sarker, 2021). A supervised learning algorithm deter-
mines a mapping function to map the input variable to 
the output variable. If a hidden layer is used by the map-
ping function, then it becomes deep learning (DL), a sub-
class of ML that can intelligently evaluate data on a large 
scale (Babu et  al., 2022). ML and DL have been widely 
employed in the field of prediction because of their supe-
rior prediction capability over conventional prediction 
models (Tarek et al., 2023).

Wind speed forecasting can be performed using the 
following ML algorithms following a detailed inves-
tigation of the literature: multiple linear regression 
(MLR), support vector regression (SVR), lasso regres-
sion, ridge regression, random forest (RF), light gradi-
ent boosting machine (LightGBM), extreme gradient 
boost (XGBoost), and long short-term memory net-
works (LSTM) (Elsaraiti & Merabet, 2021; Hanoon 
et al., 2022; Krishnaveni et al., 2021; Malakouti, 2023; 
Mohsin et  al., 2021; Salah et  al., 2022; Senthil Kumar 
P, 2019; Shawon et al., 2021; Xie et al., 2021). Air pres-
sure, temperature, humidity, and wind speed were 
implemented as input variables in the proposed mod-
els. Numerous studies pointed out that multi-variable 
long short-term memory network model (MV-LSTM) 
methodology is more effective than techniques like 
autoregressive moving average (ARMA) and single-
variable LSTM (Elsaraiti & Merabet., 2021). Addi-
tionally, different ML techniques, including bagged 
regression trees (BTs), SVR, and Gaussian process 
regression (GPR) were adapted by many reviewers in 
terms of the weekly prediction of wind speed (Hanoon 
et  al., 2022). A variety of ML methods, such as MLR, 

Fig. 2  Wind speed forecasting and the ML algorithm used in this study
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ridge, lasso, RF, SVR, and LSTM, were applied in a 
different study to predict wind speed for a specific 
weather station. These models incorporated wind 
direction, temperature, pressure, timestamp, and other 
variables for precise estimation. Notably, the RF and 
LSTM-RNN models outperformed other approaches 
for accurately wind speed forecasting (Salah et  al., 
2022). To anticipate short-term wind speed at cer-
tain ground observation stations, a MV-LSTM was 
also evolved in a different study (Xie et al., 2021). ML 
models were also deployed in the study to forecast 
wind speed and electricity generation in a SCADA 
system. Six techniques, including adaptive boosting 
(AdaBoost) and LightGBM, were applied in Malakouti 
(2023). Outcomes achieved from the ensemble tech-
nique with cross-validation were promising: the wind 
power and wind speed predictions had root mean 
square errors (RMSEs) of 11.78 and 0.2080, respec-
tively. Although several studies have successfully used 
a variety of ML models to anticipate wind speed, there 
is still unexposed potential to attain the best outcomes 
considering wind’s inconstancy. Previous studies have 
mostly concentrated on certain areas and used a lim-
ited set of ML models. There is a distinct need for 
more research to better encompass how these models 
perform in a wider range of geographic contexts, such 
as areas with changing climates or opposing weather 
patterns. Moreover, earlier examinations were incon-
clusive in considering important factors associated 
with site and turbine selection, leaving a substantial 
gap in addressing this crucial part of the study’s goals.

The wind energy initiatives in Bangladesh have been 
predominantly concentrated in specific regions, leaving 
a significant portion of the country unexplored in terms 
of wind energy projects. Limited studies on short-term 
wind speed forecasts have been conducted in Bangla-
desh, hindering the effective communication of mitiga-
tion and adaptation strategies to project stakeholders. 
This research addresses the knowledge gap by focusing 
on Kutubdia and Cox’s Bazar, situated in the southeast-
ern region of Bangladesh, known for their favorable 
wind potential. In this study, the research employs four-
teen well-established ML models to forecast 3-h inter-
val wind speed, utilizing a 21.5-year weather dataset 
from Bangladesh Meteorological Department (BMD) 
and NASA’s website. The urban environment of BMD 
suggests a relatively low wind potential, prompting the 
utilization of the NASA’s dataset, which reveals prefer-
able wind energy availability. The application of diverse 
ML models enhances the accuracy of wind speed pre-
dictions, offering valuable insights for site and turbine 
selection, operational safety measures, and the uninter-
rupted performance of wind power systems.

System model
The comprehensive methodology employed for this 
research is fully depicted in Fig. 3. The six fundamental 
stages of this procedure are succinctly outlined below:

•	 Step 1. Data collection and formatting: Initially, 
the observed data (wind speed, wind direction, 
temperature, humidity, and pressure) of the two 
coastal areas with a 3-h interval from January 1, 
2001, to June 30, 2022 (62,808 data samples of 
21.5 years) have been collected from two sources: i) 
BMD (Kutubdia and Cox’s Bazar weather stations) 
and ii) the website of NASA (Data Access Viewer) 
(“POWER | Data Access Viewer”, 2023). Data 
formatting is done by removing irrelevant data and 
rearranging the required parts.

•	 Step 2. Exploratory data analysis: Conducting 
exploratory data analysis aids in gaining a deeper 
understanding of the data’s underlying patterns. It 
is fundamental to the structure of any machine-
learning algorithm. In this part, descriptive statistics 
are analyzed to extract knowledge from the formatted 
data.

•	 Step 3. Data preprocessing: Before applying the 
ML models, data preprocessing is an essential stage 
in shaping an optimal data structure. In contrast, the 
absence of well-preprocessed data can compromise 
the efficiency and performance of machine-learning 
models, resulting in suboptimal outcomes. This 
preprocessing phase covers tasks such as handling 
missing values, extracting and selecting features, and 
normalizing data.

•	 Step 4. Train-test splitting: Following preprocessing, 
the dataset is partitioned into three subsets: i) the 
training set (70%), ii) the validation set (15%), and iii) 
the test set (15%).

•	 Step 5. Model optimization and training: In this 
stage, 14 distinct regression-based ML methods, 
including MLR, Lasso, Ridge, Elastic Net, KNN, DT, 
GBR, RF, XGBoost, LightGBM, CatBoost, LSTM, 
and GRU, are deployed to predict the wind speed 
three hours ahead. For model optimization, k-fold 
cross-validation is implemented with and without 
parameter tuning.

•	 Step 6. Forecasting and performance evaluation: 
The model, which has been trained on the validation 
dataset, is assessed, and its performance is contrasted 
with that of the initial model trained on the training 
dataset. If the disparity is minimal, the forecasting 
performance using the test dataset is cross-checked 
with the observed data to ascertain the system’s accu-
racy in construction. A comprehensive assessment 
of wind resources has been carried out using both 
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observed and predicted wind speeds, demonstrating 
the detailed advantages of forecasting.

Training models: renowned predictive algorithms
Predictive ML models based on regression present a ver-
satile range of techniques for forecasting wind speed, 
each possessing unique strengths and suitability for dif-
ferent contexts. The choice of a model involves different 
aspects, including the properties of the data, the comput-
ing capacity, and the specific requirements of the fore-
casting goal. A brief synopsis of the models used in this 
study is provided in Table 1.

Optimizing and fine‑tuning models: K‑fold cross‑validation 
and Hyperopt
Optimization and hyperparameter adjustments can 
greatly enhance the performance of regression models 
and their ability to generalize to new data. One common 
method for determining how well a ML model performs 
is k-fold cross-validation. The training data are split into 
k-folds, or subsets, to apply this technique. The model 

is then repeatedly trained and evaluated on these folds. 
Each fold served as the training set while the others pro-
vided the validation set in turn. Still, the open-source 
software Hyperopt finds the optimal values for these 
parameters using a Bayesian approach. It defines a hyper-
parameter search space and effectively navigates it with 
optimization techniques. Different hyperparameter com-
binations are explored and model performance is evalu-
ated (Hutter et al., 2019). This research applied Hyperopt 
to fine-tune the hyperparameters that yield superior per-
formance on a training dataset.

Comparing model performance: different evaluation 
metrics
To evaluate each model’s efficacy, mean squared error 
(MSE), mean absolute error (MAE), and coefficient 
of determination (R2) are determined. The average 
squared difference between observed and predicted 
values is estimated by MSE. It is employed to assess 
the degree of inaccuracy in statistical models. The 
lower the MSE the better model fits a dataset. The 
average absolute difference between the observed and 

Fig. 3  A detailed framework of the regression models for wind speed forecasting
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predicted values is called the MAE, or MAE, and it is 
used to evaluate a regression model’s performance 
(Salah et  al., 2022). Conversely, the average squared 
variation between the forecasted and observed values 

is measured by the MSE. A reduced MSE indicates an 
improved model-to-dataset fit. R2 quantifies how well 
the prediction model captures their patterns. In a per-
fect prediction model, R2 is extremely close to 1. The 

Table 1  Details of regression models utilized in this research

Regression model Full form Main features

MLR Multiple linear regression - Explores linear correlations between input variables (Salah et al., 2022)

Lasso Least absolute shrinkage and selection operator - Assigns one of the correlated predictors an elevated weight while minimizing 
the other correlated predictors to almost zero
- Imposes a penalty on the total absolute values of the coefficients, named L1 
penalty (Salah et al., 2022)

Ridge Regularized inverse depth generating estimators - Assigns weights that are similar to correlated predictors
- Imposes an L2 penalty to the total squared values of the coefficients (Salah 
et al., 2022)

Elastic Net Elastic net regression - Handles collinear data and prevent overfitting
- Combines components of both Lasso (L1) and Ridge (L2) regularization 
approaches (Malakouti, 2023)

KNN K-nearest neighbors - Makes predictions based on the average of the k-nearest neighbors’ majority 
vote for a given data point
- Applies a distance metric (Euclidean distance) which defines "nearest" (Tarek 
et al., 2023)

DT Decision tree - Identifies the greatest feature and split point at each node using mean 
squared error (MSE)
- Makes judgments by recursively separating the data based on features 
(Talekar, 2020)

RF Random forest - Combines multiple decision trees to improve prediction accuracy 
as an ensemble learning method
- Entails averaging the predictions made by several trees after they have been 
trained on arbitrary subsets of the data (Talekar, 2020)

GBR Gradient boosting regression - Reduces the loss function using gradient descent optimization
- Utilizes the decision trees which are shallow and have little depth, as weak 
learners (Tarek et al., 2023)

AdaBoost Adaptive boosting - Creates a series of weak learners, which are usually shallow decision trees, 
and evaluates their performance using an exponential loss function (Jasman 
et al., 2022)

XGBoost Extreme gradient boosting - Well-known for its rapidity and effectiveness as a powerful gradient boosting 
algorithm
- Creates a strong regression model by building a sequence of decision trees 
one after the other, each one fixing the mistakes of the previous one (“POWER | 
Data Access Viewer”, 2023)

LightGBM Light gradient boosting machine - Well-recognized for its exceptional performance as a gradient boosting 
framework
- Especially effective with the large datasets and provides quicker training 
times without sacrificing its remarkable accuracy in regression tasks (Malakouti, 
2023)

CatBoost Categorical boosting - Combines dynamic learning rates, ordered boosting, and oblivious trees 
as an advanced gradient boost technique (Jasman et al., 2022)
- Gains popularity, especially when working with complex datasets that contain 
categorical categories

LSTM Hyperopt - Understands relationships in sequential data as a type of recurrent neural 
network (RNN)
- Excels at modeling sequences where long-term context is crucial 
because of its ability to store and propagate information over extended periods 
of time (Elsaraiti & Merabet, 2021)

GRU​ Gated recurrent unit - Develops relationships in sequential data as a type of recurrent neural 
network (RNN)
- Detects long-term dependencies in sequential data while mitigating 
the problem of vanishing gradients that conventional RNNs encounter (Tao 
et al., 2022)
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statistical metrics utilized in this investigation are listed 
in Table  2. The forecasted value, observed value, and 
mean value are denoted by ŷi , yi , and y , respectively, 
while n stands for the total number of observations 
used.

Determining wind energy potential: key factors
The evaluation of performance includes standard 
analyses of site and turbine selection, offering a 
comprehensive understanding of the model’s efficacy. In 
assessing the wind energy potential of a given location, 
several key factors play a crucial role. Understanding 
and considering these factors are essential for accurately 
gauging the feasibility and viability of harnessing wind 
power in a specific area (Baloch et al., 2017; Hulio, 2021; 
Jiang et al., 2017). Table 3 represents the theoretical terms 
for determining the wind energy potential of a specific 
location. Based on the wind power density, a specific 
location and a specific wind power class are assigned, 
which leads to the realization of different scales of energy 
generation, as outlined in Table 4 (Baloch et al., 2017). 

Experimental procedure
All simulation-based experiments have been performed 
with Google Colab. The Python script has been run, 
employing the following libraries: scikit-learn, keras, 
seaborn, and matplotlib.

Site selection and data collection
Kutubdia (Upazila) and Cox’s Bazar (Sadar Upazila), of 
the district of Cox’s Bazar, Chittagong, Southeast Bang-
ladesh, have been chosen as the study sites. Kutubdia, a 
coastal island in Bangladesh, poses a unique challenge 
for wind speed prediction due to its intricate topography 
and proximity to the Bay of Bengal. Cox’s Bazar, known 
for its extensive beachfront, also demands a specialized 
approach to wind speed forecasting, considering its dis-
tinct geographical features and potential impact on wind 
project initiatives. The datasets utilized in the experiment 
were sourced from the BMD weather station and the 

NASA website. BMD employs Casella cup anemometers 
for manual wind speed measurements. Though BMD’s 
ground-based measurements are location-specific, the 
data, recorded in round figures in knot units, may have 
some reliability limitations (Khadem & Hussain, 2006). 
Conversely, satellite data cover extensive areas, provide 
a broader insight into wind patterns, and are consist-
ently standardized. The geometric and other details are 
provided in Table  5. Figure  4 displays the geographical 
positions of the stations, where the red circle indicates 
Kutubdia station and the green one indicates Cox’s Bazar 
station.

Data formatting
The gathered dataset comprises wind speed values 
recorded at a 3-h interval from January 1, 2001, to June 
30, 2022. Each dataset consists of the following vari-
ables: i) wind speed, ii) wind direction, ii) temperature; 
iii) relative humidity; and iv) pressure. Extraneous col-
umns, rows, and elements (e.g., station ID, station name, 
and details of parameters) have been eliminated from the 
original datasets. Then the datasets have been prepared 
in a convenient format for data analysis and preproc-
essing. The datasets from the BMD stations have been 
labeled as Dataset 1. Conversely, the datasets sourced 
from the website of NASA are named Dataset 2.

Exploratory data analysis
Exploratory data analysis (EDA) is essential at the begin-
ning of the data analysis process. To gain a greater 
knowledge of the dataset’s characteristics, make-up, and 
prospective patterns, it requires closely examining and 
graphically portraying the dataset. Here, EDA techniques 
include summarizing key statistics, generating visual 
plots, and identifying missing values. This process helps 
in understanding the nature of the data, uncovering the 
relationships between variables, and guiding subsequent 
analysis. It plays a crucial role in ensuring the availability 
of wind speed and generation scale for a specific site.

Tables  6, 7 show the descriptive statistics of both 
datasets with the count, mean, minimum, maximum, 
and standard deviation of each input variable. It has 
been seen that each variable is supposed to contain 
62,808 samples. Here are some null values in Dataset 
1 for each station. For Kutubdia station, wind speed 
and wind direction each have 241 null values, whereas 
humidity has 240 null values. For Cox’s Bazar station, 
22 null values were observed in each of the two vari-
ables—wind speed and wind direction. Other variables 
contain 62,808 records. There are two missing val-
ues for each variable in Dataset 2 for both stations. In 

Table 2  Statistical performance metrics commonly used in 
regression analysis

Metric Full form Equation

MSE Mean squared error MSE = 1
n

∑n
i=1

(
yi − ŷi

)2

MAE Mean absolute error MAE = 1
n

∑n
i=1

∣∣yi − ŷi
∣∣

R2 Coefficient of determination
R2 = 1−

∑n
i=1 (yi−ŷi)

2

∑n
i=1 (yi−y)

2
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Kutubdia and Cox’s Bazar, the BMD station calculates 
the average wind speed over the past 21.5  years to be 
1.1 and 1.04  m/s, respectively, at a height of 10  m. In 
contrast, NASA records their measurements at 3.42 
and 3.89 m/s for the same height. As per the standard 

deviation, the wind speed distribution in Dataset 1 
shows values of 1.06  m/s and 1.50  m/s. Similarly, in 
Dataset 2, the corresponding values are 1.53 and 1.69. 
These figures represent the least dispersed values 
among the input variables. It is crucial to note that 

Table 3  Theoretical details of wind resource assessment

Considered factors Definition Equation

Wind speed distribution model (MLE-
Weibull)

• Weibull probability density function (PDF) is commonly 
used to model the distribution of wind speeds
• The Weibull distribution is flexible and can closely 
approximate the distribution of wind speeds observed 
in many locations
• It is characterized by shape (k) and scale (c) parameters, 
offers flexibility in capturing wind speed variability
• MLE optimally estimates these parameters, providing 
efficient, consistent, and statistically sound results (Baloch 
et al., 2017)

f(v) = k
c

(
v
c

)k−1
exp[−

(
v
c

)k
], (k > 0, c > 0)

where
• v is the wind speed (m/s),
• c is the scale parameter (m/s),
and
• k is the shape parameter (dimensionless)

Average wind speed (m/s) • Average wind speed is a measure of the average speed 
of the wind over a specified period of time at a particular 
location

v = cŴ
(
1
k + 1

)
,

where
• v is the average wind speed,
• c is the scale parameter (m/s),
and
• k is the shape parameter (dimensionless)

Wind power density (W/m2) • Wind power density is a measure of the amount of power 
available in the wind at a particular location and is a crucial 
parameter in assessing the potential for harnessing wind 
energy
• It is referred as the power per unit area carried 
by the wind (Baloch et al., 2017; Hulio, 2021; Jiang et al., 
2017)

w = 1
2ρc

3Ŵ

(
3
k + 1

)
,

where
• ρ is air density (kg/m3),
• c is the scale parameter (m/s),
and
• k is the shape parameter (dimensionless)

Annual average energy output (kWh) • The annual average energy output refers to the amount 
of electrical energy generated by a wind turbine 
over the course of a year
It is a key performance metric that provides an indication 
of the system’s overall efficiency and productivity (Baloch 
et al., 2017; Hulio, 2021; Jiang et al., 2017)

EA = T ×
∫∞

0 PA(v)f(v)dv

PA(v) =






Pr, vr ≤ v ≤ vout
P

v−vin
vr−vin

, vin ≤ v ≤ vr

0, otherwise,

where
• vin is the cut-in wind speed,
• vr is the rated wind speed, the cut-out wind 
speed,
• T is the time period of the wind turbine
operates,
• Pr is the rated power, and
• f(v) is the optimal Weibull PDF

Capacity factor (%) • The capacity factor (CF) serves as a crucial metric 
for assessing the performance of a wind turbine, valuable 
for both end-users and manufacturers
• It represents the ration of the real average power 
produced during a specific timeframe (assuming 
continuous turbine operation) and the rated peak power, 
which is the maximum theoretical power (Baloch et al., 
2017; Hulio, 2021; Jiang et al., 2017)

CF = EA
ER

ER = T × PR,
where
• CF is the capacity factor (Jiang et al., 2017)

Logarithmic wind profile law • Average wind speed deviation with height is a concept 
that describes how wind speed changes as you move 
vertically above the Earth’s surface
This phenomenon is often explained by wind shear, which 
is the variation in wind speed and direction with altitude 
(Hulio, 2021)

v2 = v1
ln(

h2
z0

)

ln(
h1
z0

)
,

where
• v1 is the wind speed at height h1,
• v2 is the wind speed at height h2 , and
• z0 is the roughness length of the terrain
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Dataset 1 includes a minimum wind speed value of 
zero, a characteristic not observed in Dataset 2.

Data preprocessing
Both datasets necessitate preprocessing techniques 
to meet the requirements of ML algorithms. Address-
ing null values is a crucial step before initiating the 
modeling process. Additionally, feature engineering is 
essential for constructing and training more effective 

features, ultimately improving the effectiveness of ML 
models.

Handling missing values: To handle missing values, 
the following methods are mostly used: forward filling, 
backward filling, linear interpolation, quadratic inter-
polation, cubic interpolation, KNN, multiple imputa-
tion by chained equations (MICE), and so on (Liu et al., 
2021). As the count of missing values is very small for 
both datasets, the common statistical method of linear 
interpolation has been adopted to fill up the missing 
values in the present study.

Zero refining: When employing ML models, certain 
algorithms may exhibit sensitivity to the existence of zero 
values. In such instances, it can be advantageous to refine 
or transform these zero values. To address the excessive 
presence of zero values in the wind speed data of Dataset 
1, zeros have been adjusted to the smallest valid value as 
verified by BMD (Nurunnahar et al., 2017).

Feature extraction: Date-related features were gener-
ated to extract valuable information from the date col-
umn of Dataset 1. This led to the augmentation of the 
dataset with additional columns, including year, month, 
day, and hour. Dataset 2 already contains these columns 
relevant to the date. By incorporating time-delayed data 
from the wind speed time series, we aimed to evaluate 
the influence of previous values on present observations 
for both datasets. This approach proves beneficial in 
accounting for important correlated time lags. In Fig. 5, 
autocorrelation function (ACF) curves were plotted 
with 60 lags to determine suitable input lags. The choice 

Table 4  International standards of wind power generation classification

Height (m) 10 30 50

Generation scale Wind 
power 
class

Average wind 
velocity (m/s)

Wind power 
density
(W/m2)

Average wind 
velocity (m/s)

Wind power 
density
(W/m2)

Average wind 
velocity (m/s)

Wind power density
(W/m2)

Poor 1 0 – 4.4 0 – 100 0 – 5.1 0 – 160 0 -5.6 0 - 200

Marginal 2 4.4 – 5.1 100 – 150 5.1 – 5.9 160 – 240 5.6 – 6.4 200 – 300

Moderate 3 5.1 – 5.6 150 – 200 5.9 – 6.5 240 – 320 6.4 – 7 300 – 400

Good 4 5.6 – 6.4 200 – 250 6.5 – 7 320 – 400 7 – 7.5 400 – 500

Excellent 5 6.4 – 7 250 – 300 7 – 7.4 400 – 480 7.5 – 8 500 – 600

Excellent 6 7 – 7.5 300 – 400 7.4 – 8.2 480 – 640 8 – 8.8 600 – 700

Excellent 7 < 7.5 < 400 8.2 – 11 640 – 1600 < 8.8 < 700

Table 5  Information about the selected sites obtained from two different sources

Station name Station ID Longitude (°E) Latitude (°N) Altitude (m) Elevation from sea level 
(m) for BMD data

Elevation from 
MERRA-2 (m) for 
NASA data

Kutubdia 41,989 91.85° 21.8167° 10 2.74 25.33

Cox’s Bazar 41,992 91.9667° 21.4333° 10 2.10 25.33

Fig. 4  Geometric location of the studied weather stations
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of input lag features was determined by a correlation 
threshold of 0.4 or higher. In this scenario, for Dataset 1, 
the initial 12 and 8 lags were selected for Kutubdia and 
Cox’s Bazar stations, respectively. In Dataset 2, the first 
18 lags were chosen for both stations. A rolling window 
scheme was employed while taking into account the 
input lags (Mollick et al., 2023).

Feature selection: Pearson’s correlation coefficient 
(PCC) is employed to quantify the extent of the associa-
tion between two variables. The correlation may have a 
positive ( +) or negative (-) value for the relationship 
(Salah et al., 2022). Pearson’s correlation matrix, showing 
the correlation between the features within each dataset, 
is presented in Fig. 6. It is observed that Dataset 1 shows 
the lowest connection (r = -0.016) between wind speed 
and hour for Kutubdia station, while Cox’s Bazar station 
shows the lowest correlation (r = -0.0021) between wind 
speed and day. In Dataset 2, both stations have the lowest 
correlation with day. For both datasets, the wind speed is 
positively correlated with the rolling mean, with the high-
est value of r. The SelectKBest feature selection method 
from the sci-kit-learn library, a filter-based approach, has 

been utilized. This method operates on the PCC between 
pairs of input variables, aiding in filtering out the most 
pertinent features. A subset comprising the eight most 
correlated features was chosen for both datasets (Mollick 
et al., 2023).

Data normalization: In ML practices, data normaliza-
tion is a common technique utilized to mitigate the influ-
ence of data range variations (Waqas Khan et al., 2020). In 
this study, robust scaling is adopted for data normaliza-
tion. This technique employs the median and interquar-
tile range (IQR) to adjust input values. This characteristic 
of robust scaling ensures its resilience against the detri-
mental effects of outliers (Zhang et al., 2022).

Data splitting
Each of the considered datasets is divided into three 
parts: 70% as a training set, 15% as a validation set, and 
15% as a test set. A training set is utilized to train the 
ML model. From this data, the model learns trends, con-
nections, and features. The model has to have its perfor-
mance assessed after training. This is accomplished by 
using the validation set. The model is tested on the test 

Table 6  Statistic features of Dataset 1

Weather station Feature Count Missing Minimum Maximum Mean Std. deviation

Kutubdia Wind speed (m/s) 62,567 241 0 20.58 1.1 1.06

Wind direction ( Degree) 62,567 241 0 990 148.86 113.37

Temperature ( ◦C) 62,808 240 2.9 38 26.01 4.41

Humidity (%) 62,568 240 8 100 80.73 12.96

Pressure (millibar) 62,808 240 9.5 2003.8 1004.58 62.79

Cox’s Bazar Wind speed (m/s) 62,786 22 0 18.52 1.04 1.5

Wind direction (Degree) 62,786 22 0 900 80.68 117.54

Temperature ( ◦C) 62,808 0 10.5 39 26.15 4.14

Humidity (%) 62,808 0 13 100 79.93 15.46

Pressure (millibar) 62,808 0 100.7 1023.4 1008.02 6.03

Table 7  Statistic features of Dataset 2

Weather station Feature Count Missing Minimum Maximum Mean Std. deviation

Kutubdia Wind speed (m/s) 62,806 2 0.03 17.17 3.42 1.53

Wind direction ( Degree) 62,806 2 0 359.91 190.72 99.95

Temperature ( ◦C) 62,806 2 11.8 35.91 25.65 3.84

Humidity (%) 62,806 2 21.75 100 80.22 12.92

Pressure (millibar) 62,806 2 980.5 1019 1005.30 5.03

Cox’s Bazar Wind speed (m/s) 62,806 2 0.02 19.16 3.89 1.69

Wind direction (Degree) 62,806 2 0 359.93 201.02 103.75

temperature ( ◦C) 62,806 2 15.47 33.65 26.17 3.04

Humidity (%) 62,806 2 28.56 100 79.20 10.65

Pressure (millibar) 62,806 2 985.20 1019.9 1006.54 4.91
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set after having been trained and validated using the 
training and validation sets. This set provides an unbi-
ased evaluation of the model’s performance since it is not 
visible to the model during training or tuning.

Model optimization and training
For model training, the study used two independent 
methods: first, a tenfold cross-validation (tenfold CV), 
and second, hyperparameter tuning with Hyperopt. 
Both methods were used to assess the model’s perfor-
mance, and the best model was ultimately picked as a 
consequence. The validation set was then used to test this 
improved model. An essential assessment for model gen-
eralization is the comparison of CV findings and valida-
tion set performance. The model can be used to test the 
data with confidence if the differences are small, enhanc-
ing the final model’s robustness.

The efficiency of a ML model was evaluated using a 
tenfold cross-validation technique. The dataset needs 
to be split into ten identical folds to perform this. The 
model is trained on nine of these folds and evaluated on 
the final or tenth fold. The technique is repeated a total 
of ten times, with each fold serving as the test set. The 
final performance metric is generated by averaging the 
ten individual test scores. Hyperopt has also been con-
ducted to determine the optimal value of the different 
parameters. We leveraged Hyperopt’s fmin function to 
meticulously search for the optimal hyperparameters, 
aiming to minimize the negative MSE. The hyperparam-
eter space was meticulously defined, drawing insights 
from prior research endeavors. With a defined limit of 
80 evaluations, the hyperparameter optimization pro-
cess was meticulously logged and tracked in detailed 
trials. Subsequently, each model was meticulously 

Fig. 5  ACF curves for Dataset 1 and Dataset 2
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trained using the best hyperparameters on the des-
ignated training dataset. Upon obtaining the optimal 
hyperparameters through Hyperopt, the models were 
further fine-tuned on the training data and assessed for 
performance. Finally, the refined and optimized mod-
els were deployed to provide accurate predictions on 
the test dataset following a validation assessment on 

the validation set. Table 8 displays details regarding the 
regression technique, the hyperparameters slated for 
optimization, and their respective search spaces. Apart 
from hyperparameter adjustments, all other param-
eters for each model were maintained at their default 
settings. The deep learning model, LSTM, is structured 
as a sequential model, incorporating only one layer 

Fig. 6  Heatmap of the correlation matrix for Dataset 1 and Dataset 2
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followed by a dense output layer. This represents a sim-
plified LSTM architecture typically employed for fun-
damental sequential prediction assignments. The Adam 
optimizer with a dropout of 0.1 is used, and the MSE is 
chosen as the loss function. The model is trained for 50 
epochs, with training progress printed at each epoch. 
Similarly, the GRU adheres to the same structure and 
methodology as LSTM.

Results and discussion
Comparing predictive models using evaluation metrics
After applying the relevant equations of the eight ML 
models in a Python environment, the prediction results, 
including RMSE, MAE, MSE, and R2, are obtained, 
which are displayed in Tables  9, 10, 11, 12. Overall, all 
models exhibit similar performance, providing moderate 
predictions. Notably, CatBoost model outperforms other 
machine-learning models across various performance 
metrics for both weather stations.

Utilizing tenfold cross-validation, CatBoost (CATB) 
demonstrated the best performance across all datasets.

In Dataset 1, the model attained an MSE of 0.3745, 
MAE of 0.3984, and R2 of 0.6218 for Kutubdia station. For 
Cox’s Bazar station, the model yielded an MSE of 0.9462, 
MAE of 0.6164, and R2 of 0.514. In Dataset 2, the model 
demonstrated optimal performance with MSE values of 
0.3224 and 0.3541, MAE values of 0.4117 and 0.4347, and 

R2 values of 0.8618 and 0.8755 for Kutubida and Cox’s 
Bazar, respectively. Post-hyperparameter optimization, 
the model’s performance saw notable improvement on 
both datasets. However, it is worth noting that, in some 
scenarios, without any parameter tuning, the LSTM and 
GRU models exhibit superior performance in the context 
of tenfold cross-validation. Following hyperparameter 
tuning, CatBoost emerged as the top-performing model, 
demonstrating impressive outcomes in Dataset 1. For 
Kutubdia, it achieved an MSE of 0.3744, MAE of 0.399, 
and R2 of 0.6218. Similarly, for Cox’s Bazar, it delivered 
an MSE of 0.9382, MAE of 0.6162, and R2 of 0.518. Shift-
ing focus to Dataset 2, CatBoost emerged as the top-per-
forming model, with an MSE of 0.3218 and 0.3533, MAE 
of 0.4117 and 0.4342, and R2 of 0.8621 and 0.8758 for 
Kutubdia and Cox’s Bazar, respectively.

In the validation phase, CatBoost performed excep-
tionally, showcasing distinguished results with an MSE 
of 0.3388, MAE of 0.3912, and R2 of 0.6409 for Kutub-
dia station in Dataset 1. Similarly, it attained the best 
results with an MSE of 0.9328, MAE of 0.6157, and R2 
of 0.5192 for Cox’s Bazar station. Turning attention to 
Dataset 2, the CatBoost again outperformed its coun-
ter models with an MSE of 0.3309 and 0.3713, MAE of 
0.415, and 0.4398, and R2 of 0.858 and 0.8714 for Kutub-
dia and Cox’s Bazar, respectively. Following closely, the 
LGBM model illustrated the second-best performance 
for all datasets. Moving to the testing phase, in Dataset 
1, CatBoost achieved an MSE of 0.3942, a MAE of 0.4042, 
and an R2 of 0.6242 for Kutubdia station. Again, Cat-
Boost showcased notable performance with an MSE of 
0.9906, MAE of 0.6363, and R2 of 0.4994 for Cox’s Bazar 
in Dataset 1. In Dataset 2, the dominating performance 
was achieved by CatBoost, with an MSE of 0.3305, MAE 
of 0.4164, and R2 of 0.8552 for Kutubdia. For Cox’s Bazar, 
the model’s performance is nearly identical to Kutubdia, 
with an MSE of 0.3744, MAE of 0.4415, and R2 of 0.867. 
For each scenario (validation and testing phase), the 
LGBM model demonstrated performance closely trail-
ing behind the leading model in all datasets. Conversely, 
the AdaBoost demonstrated relatively lower performance 
compared to the other models with the exception of the 
Cox’s Bazar station in Dataset 1. In this case, the Lasso 
model attained the lowest evaluation metrics.

Apart from the results shown in Tables  9, 10, 11, 12, 
the difference between the observed wind speed obser-
vations and the predicted wind speed based on the best-
performing prediction model during the testing phase is 
also depicted in scatter plots, histograms, and box plots 
(Figs. 7, 8, and 9). Figures 7 and 8 show the scatter plot 

Table 8  Hyperparameter tuning using Hyperopt

Regression method Hyperparameter Search space

MLR - -

Lasso alpha 10–3, 10–2, 10–1,…..,103

Ridge alpha 10–3, 10–2, 10–1,…..,103

Elastic Net alpha 10–3, 10–2, 10–1,…..,103

KNN n_neighbors 1, 2, 3,….., 11

DT max_depth 1, 2, 3, ….., 9

RF max_depth
n_estimators

1, 2, 3, ….., 9
50, 55, 60, ….., 195

GBR learning_rate
max_depth

10–5, 10–4, 10–3, …..,1
1, 2, 3, ….., 9

ADABoost learning_rate 10–5, 10–4, 10–3, …..,1

XGBoost learning_rate
max_depth

10–5, 10–4, 10–3, …..,1
1, 2, 3, ….., 9

LightGBM learning_rate
max_depth

10–5, 10–4, 10–3, …..,1
1, 2, 3, ….., 9

CatBoost learning_rate 10–5, 10–4, 10–3, …..,1

LSTM no. of units
learning_rate

10, 20, 30, ….., 100
10–5, 10–4, 10–3, …..,1

GRU​ no. of units
learning_rate

10, 20, 30, ….., 100
10–5, 10–4, 10–3, …..,1
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and forecasting error histogram plot, respectively, for 
both datasets during testing phase.

The scatter plot presents the predicted versus the 
observed wind speed values. Plots evaluate the cause-
and-effect relationship between projected and observed 
wind speed and measure the robustness of the associa-
tion between these two variables using the coefficient of 
determination R2. In terms of R2 for Kutubdia and Cox’s 
Bazar in Dataset 1, the Catboost model produced the best 
prediction performance (R2 = 0.642 and 5342, respec-
tively). Similarly, in Dataset 2 the model produced the 
best results (R2 = 0.8552 and 0.867, respectively) for both 
stations. Additionally, there is considerably less deviation 
from the regression line in Dataset 1 for all cluster points 
compared to Dataset 2. In contrast to Dataset 2, the Cat-
Boost model exhibited robust prediction performance for 

Dataset 1. In summary, when compared to BMD data, 
the CatBoost model exhibited the least deviation from 
the line for all data samples, marking a significant shift in 
NASA data. This aligns with the accuracy metrics, par-
ticularly the R2 values presented in Tables 9, 10, 11, 12.

The histogram plot graphically interprets the error dis-
tribution by displaying the number of error values within 
a certain range, and it includes the Gaussian kernel den-
sity function to guarantee that the error follows a nor-
mal distribution. The plots indicate that in Dataset 1, the 
CatBoost model exhibits the standard deviation (0.6278 
and 0.9952 for Kutubdia and Cox’s Bazar, respectively), 
suggesting that the data points cluster closely around 
the mean. Meanwhile, in Dataset 2, the CatBoost model 
demonstrates a standard deviation of 0.5749 and 0.6119 
for Kutubdia and Cox’s Bazar, respectively. The smaller 

Table 9  Creating and comparing 14 models using tenfold cross-validation and hyperparameter tuning with Hyperopt optimization 
for Dataset 1 (best results are bolded)

Weather station Model 10-fold cross-validation Hyperparameter tuning with Hyperopt

MSE MAE R2 MSE MAE R2

Kutubdia MLR 0.4174 0.4325 0.5782 0.4174 0.4325 0.5782

Lasso 0.9899 0.7127 -0.0003 0.4310 0.4477 0.5645

Ridge 0.4174 0.4325 0.5782 0.4174 0.4325 0.5782

Elastic Net 0.9256 0.6878 0.0648 0.4240 0.4397 0.5716

KNN 0.4350 0.4291 0.5604 0.4096 0.4172 0.5863

DT 0.7904 0.5412 0.1976 0.4229 0.4250 0.5727

RF 0.4021 0.4147 0.5937 0.3919 0.4086 0.6039

GBR 0.3855 0.4089 0.6105 0.3789 0.4030 0.6174

AdaBoost 0.6720 0.5978 0.3225 0.4626 0.4598 0.5320

XGBoost 0.3980 0.4073 0.5976 0.3809 0.4041 0.6152

LightGBM 0.3798 0.4018 0.6163 0.3789 0.4020 0.6173

CatBoost 0.3745 0.3984 0.6218 0.3744 0.3990 0.6218
LSTM 0.3964 0.4173 0.5995 0.4350 0.4501 0.5604

GRU​ 0.3984 0.4194 0.5973 0.4050 0.4229 0.5908

Cox’s Bazar MLR 1.1323 0.7412 0.4182 1.1323 0.7412 0.4182

Lasso 1.9466 1.1068 -0.0002 1.1479 0.7460 0.4102

Ridge 1.1323 0.7412 0.4182 1.1323 0.7413 0.4182

Elastic Net 1.8116 1.0660 0.0693 1.1418 0.7431 0.4134

KNN 1.1381 0.6638 0.4152 1.0675 0.6511 0.4516

DT 1.9969 0.8122 -0.0265 1.0338 0.6485 0.4691

RF 0.9779 0.6291 0.4976 1.0116 0.6406 0.4802

GBR 0.9615 0.6286 0.5061 0.9546 0.6251 0.5095

AdaBoost 1.0962 0.8532 0.3716 0.98144 0.7329 0.4375

XGBoost 0.9982 0.6294 0.4872 0.9524 0.6209 0.5107

LightGBM 0.9472 0.6192 0.5135 0.9468 0.6184 0.5137

CatBoost 0.9462 0.6164 0.5140 0.9382 0.6162 0.5180
LSTM 1.0051 0.6588 0.4835 0.9943 0.6464 0.4892

GRU​ 1.0067 0.6569 0.4827 1.0042 0.6552 0.4839
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standard deviation was achieved by the model in case of 
Kutubdia station for both datasets. This implies that the 
data points are more tightly grouped around the mean 
when predicted by this model.

Figure 9 displays boxplots illustrating prediction errors 
for various models using test datasets. Each graph rep-
resents the distribution of residual errors, indicating 
key statistics like minimum, first quartile, median, third 
quartile, and maximum values. The bagging and boosting 
ensemble models, particularly RF, GBR, XGBoost, Light-
GBM, and CatBoost, showcase similar performance, with 
noticeable differences in the width of the box across all 
datasets. Regarding outliers, all models perform in a sim-
ilar manner.

Quartile percent values, which may indicate additional 
information about the efficacy of each model individually, 
are shown in Tables 13 and 14. It is seen that the CatBoost 

produces a smaller IQR of 0.5408 for Kutubdia station in 
Dataset 1 than the other models do. For Cox’s Bazar sta-
tion the decision tree (DT) model has the smallest IQR of 
0.6845. In Dataset 2, the CatBoost model generates the 
smallest IQR, measuring 0.6369 for Kutubdia and 0.6730 
for Cox’s Bazar station. The bagging and boosting ensem-
ble models exhibit lower standard deviations in predic-
tion values for, primarily due to their ensemble learning 
nature and effective handling of outliers. These models 
combine multiple weak learners and apply regularization 
techniques to prevent overfitting, resulting in more stable 
and consistent predictions. Additionally, their focus on 
important features contributes to the reduced variability 
in predictions across different data points.

As stated earlier, in this study, 14 ML techniques, 
including MLR, Lasso, Ridge, Elastic Net, KNN, DT, RF, 
GBR, AdaBoost, XGBoost, LightGBM, CatBoost, LSTM, 

Table 10  The evaluation metrics for 14 models on both validation and test segment for Dataset 1 (best results are bolded)

Weather station Model Validation dataset Test dataset

MSE MAE R2 MSE MAE R2

Kutubdia MLR 0.3955 0.4272 0.5808 0.4467 0.4371 0.5741

Lasso 0.3955 0.4272 0.5808 0.4467 0.4371 0.5741

Ridge 0.4052 0.4424 0.5705 0.4618 0.4526 0.5597

Elastic Net 0.3989 0.4342 0.5771 0.4551 0.4445 0.5661

KNN 0.3862 0.4122 0.5906 0.4472 0.4265 0.5737

DT 0.3892 0.4171 0.5874 0.4448 0.4290 0.5760

RF 0.3638 0.4022 0.6143 0.4155 0.4127 0.6038

GBR 0.3477 0.3960 0.6314 0.4073 0.4085 0.6117

AdaBoost 0.4331 0.4523 0.5409 0.4871 0.4646 0.5357

XGBoost 0.3485 0.3969 0.6306 0.4031 0.4085 0.6157

LightGBM 0.3437 0.3953 0.6357 0.4072 0.4079 0.6118

CatBoost 0.3388 0.3912 0.6409 0.3942 0.4042 0.6242
LSTM 0.3642 0.4143 0.6139 0.4206 0.4254 0.5990

GRU​ 0.3685 0.4136 0.6094 0.4257 0.4242 0.5941

Cox’s Bazar MLR 1.1406 0.7451 0.4121 1.1681 0.7559 0.4097

Lasso 1.1642 0.7510 0.3999 1.1843 0.7599 0.4015

Ridge 1.1406 0.7451 0.4121 1.1681 0.7559 0.4097

Elastic Net 1.1553 0.7476 0.4045 1.1788 0.7571 0.4042

KNN 1.0651 0.6512 0.4510 1.1283 0.6711 0.4297

DT 1.0297 0.6496 0.4693 1.1088 0.6716 0.4396

RF 0.9655 0.6268 0.5023 1.0180 0.6464 0.4854

GBR 0.9496 0.6249 0.5105 1.0024 0.6444 0.4933

AdaBoost 0.9684 0.7280 0.4421 0.9536 0.7272 0.4501

XGBoost 0.9416 0.6195 0.5147 1.0003 0.6416 0.4945

LightGBM 0.9395 0.6183 0.5158 0.9944 0.6380 0.4974

CatBoost 0.9328 0.6157 0.5192 0.9906 0.6363 0.4994
LSTM 0.9895 0.6514 0.4900 1.0166 0.6645 0.4862

GRU​ 1.0065 0.6482 0.4812 1.0431 0.6626 0.4728
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and GRU, have been used to estimate the short− time 
wind speed forecast. Result shows, the CatBoost model is 
identified as the most proficient predictor of short-term 
wind speed forecast based on the conducted estimation 
procedures, exhibiting the smallest error metric scores 
and the highest level of accuracy compared to alternative 
methods. However, the forecasting accuracy for Dataset 
2 surpasses that of Dataset 1. Table 15 displays the per-
formance assessment, showcasing the most successful 
outcome achieved, in contrast to models examined in 
previous studies. 

Generation scale and turbine compatibility
Wind resource assessment is a critical step in evaluating 
the viability of a location for harnessing wind energy. It 
involves understanding the wind characteristics unique 
to a specific site, essential for optimizing the design and 

performance of wind energy projects. In this study, maxi-
mum likelihood estimation (MLE) of the Weibull distri-
bution is used which to aid in modeling the probability 
distribution of the observed and predicted wind speeds 
of both stations, providing valuable insights into the 
expected wind energy potential.

Based on the superior prediction accuracy demon-
strated, we have opted to proceed with the satellite data 
for further investigation, favoring it over BMD data.

In order to correspond with the wind speed measure-
ments commonly recorded by commercial turbines at 
hub heights of 50 m and 120 m, the wind speed data were 
transformed from 10  m to those specific heights using 
the logarithmic law wind formula. The weather station 
is located in a built-up area, and the roughness value 
(z0) in this context falls within the range of 0.1 to 0.4 m. 
For our analysis, we have adopted the value of 0.3 (Islam 
et al., 2013). Figure 10 illustrates the probability density 

Table 11  Creating and comparing 14 models using tenfold cross-validation and hyperparameter tuning with Hyperopt optimization 
for Dataset 2 (best results are bolded)

Weather station Model 10-fold cross-validation Hyperparameter tuning with Hyperopt

MSE MAE R2 MSE MAE R2

Kutubdia MLR 0.4976 0.5310 0.7868 0.4976 0.5310 0.7868

Lasso 1.9781 1.0706 0.1533 0.5115 0.5361 0.7809

Ridge 0.4976 0.5310 0.7868 0.4976 0.5310 0.7868

Elastic Net 1.3426 0.8776 0.4252 0.5103 0.5373 0.7814

KNN 0.4106 0.4725 0.8240 0.3913 0.4607 0.8324

DT 0.6882 0.6104 0.7049 0.4571 0.4973 0.8041

RF 0.3473 0.4286 0.8512 0.4057 0.4705 0.8261

GBR 0.3861 0.4607 0.8345 0.3351 0.4200 0.8564

AdaBoost 0.6405 0.6127 0.7255 0.5284 0.5457 0.7736

XGBoost 0.3413 0.4234 0.8538 0.3339 0.4192 0.8569

LightGBM 0.3348 0.4215 0.8565 0.3332 0.4200 0.8572

CatBoost 0.3224 0.4117 0.8618 0.3218 0.4117 0.8621
LSTM 0.4171 0.4825 0.8215 0.4107 0.4793 0.8241

GRU​ 0.4237 0.4874 0.8187 0.4223 0.4869 0.8191

Cox’s Bazar MLR 0.5343 0.5504 0.8121 0.5343 0.5504 0.8121

Lasso 2.1950 1.1540 0.2288 0.5524 0.5602 0.8057

Ridge 0.5343 0.5504 0.8121 0.5343 0.5505 0.8121

Elastic Net 1.5971 0.9822 0.4388 0.5513 0.5618 0.8062

KNN 0.4495 0.4964 0.8419 0.4275 0.4844 0.8497

DT 0.7535 0.6428 0.7351 0.4889 0.5205 0.8280

RF 0.3810 0.4521 0.8660 0.4311 0.4887 0.8484

GBR 0.4111 0.4763 0.8554 0.3692 0.4455 0.8702

AdaBoost 0.7095 0.6509 0.7505 0.5635 0.5664 0.8019

XGBoost 0.3801 0.4484 0.8663 0.3688 0.4445 0.8703

LightGBM 0.3637 0.4420 0.8721 0.3642 0.4419 0.8720

CatBoost 0.3541 0.4347 0.8755 0.3533 0.4342 0.8758
LSTM 0.4498 0.5031 0.8420 0.4543 0.5061 0.8403

GRU​ 0.4648 0.5124 0.8367 0.4727 0.5183 0.8340
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function (PDF) plot of both observed and predicted wind 
speed data for both stations. The average wind veloc-
ity and wind power density have been computed using 
the Weibull distribution parameters (k and c) detailed in 
Tables 16 and 17, corresponding to heights of 50 m and 
120 m. Wind power class and generation scale have been 
assigned based on the calculated wind power density. 
While the parameter values exhibit slight variations from 
those of the observed data, consistent matching of wind 
power class and generation scale is observed across all 
cases, except for Kutubdia station at 120 m height.  

When confronted with a location characterized by 
small and marginal generation-scale wind speeds (e.g., 
Kutubdia and Cox’s Bazar), there are particular fac-
tors to take into account when selecting and optimiz-
ing turbines. It becomes imperative to opt for turbines 

specifically engineered to function effectively in such 
circumstances. For instance, specialized turbines with 
efficient blades are crucial for capturing energy from 
slower winds in low-wind conditions. A larger rotor 
diameter allows for more effective energy extraction at 
lower wind speeds. Additionally, selecting turbines with 
lower cut-in speeds ensures power generation starts at 
lower wind speeds, maximizing overall energy yield. 
Optimizing pitch control is crucial for maximizing 
energy extraction from low wind speeds. Fine-tuning 
the turbine’s speed regulation system, including adjust-
ing the generator’s speed curve, enhances efficiency in 
these conditions. Additionally, careful consideration of 
wake effects and proper spacing between turbines, cou-
pled with advanced wake modeling techniques, plays a 
pivotal role in optimizing energy production within the 

Table 12  The evaluation metrics for 14 models on both validation and test segment for Dataset 2 (best results are bolded)

Weather station Model Validation dataset Test dataset

MSE MAE R2 MSE MAE R2

Kutubdia MLR 0.5070 0.5316 0.7825 0.4912 0.5293 0.7849

Lasso 0.5213 0.5372 0.7764 0.5007 0.5344 0.7807

Ridge 0.5070 0.5316 0.7825 0.4912 0.5293 0.7849

Elastic Net 0.5182 0.5379 0.7777 0.4988 0.5349 0.7815

KNN 0.3972 0.4631 0.8296 0.3875 0.4604 0.8303

DT 0.4665 0.5002 0.7999 0.4543 0.4980 0.8010

RF 0.4208 0.4737 0.8194 0.4138 0.4756 0.8187

GBR 0.3509 0.4242 0.8495 0.3447 0.4256 0.8490

AdaBoost 0.5370 0.5475 0.7697 0.5159 0.5464 0.7741

XGBoost 0.3427 0.4222 0.8530 0.3429 0.4249 0.8498

LightGBM 0.3411 0.4221 0.8537 0.3447 0.4250 0.8490

CatBoost 0.3309 0.4150 0.8580 0.3305 0.4164 0.8552
LSTM 0.3832 0.4554 0.8356 0.3739 0.4549 0.8362

GRU​ 0.3860 0.4589 0.8345 0.3709 0.4558 0.8375

Cox’s Bazar MLR 0.5679 0.5610 0.8032 0.5434 0.5538 0.8070

Lasso 0.5833 0.5707 0.7979 0.5587 0.5623 0.8015

Ridge 0.5679 0.5610 0.8032 0.5434 0.5538 0.8070

Elastic Net 0.5803 0.5712 0.7989 0.5582 0.5633 0.80171

KNN 0.4500 0.4891 0.8441 0.4401 0.4891 0.8436

DT 0.5235 0.5337 0.8186 0.4973 0.5254 0.8233

RF 0.4548 0.4988 0.8424 0.4451 0.4943 0.8419

GBR 0.3913 0.4528 0.8644 0.3833 0.4504 0.8638

AdaBoost 0.5908 0.5761 0.7953 0.5696 0.5702 0.7977

XGBoost 0.3949 0.4526 0.8632 0.3843 0.4502 0.8634

LightGBM 0.3904 0.4497 0.8647 0.3834 0.4470 0.8638

CatBoost 0.3713 0.4398 0.8714 0.3744 0.4415 0.8670
LSTM 0.4411 0.4901 0.8472 0.4342 0.4903 0.8457

GRU​ 0.4676 0.5087 0.8380 0.4575 0.5089 0.8375
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wind farm. It is noteworthy to mention that the actual 
turbine specifications may vary based on manufactur-
ers and specific models. It is important to consult the 
manufacturer’s specifications for precise details. Recent 
and popular models such as Vestas, Siemens Gamesa, 
General Electric (GE) Renewables, Nordex, Enercon, 
Senvion, Suzlon, Goldwind, Ming Yang, and Envision 
Energy are commonly employed for turbines in sites 
with lower wind speeds. Table 18 displays the attributes 
of some low-speed wind turbines of different models 
as observed in recent years (Bauer, 2023). The decision 
options for turbine selection involve evaluating two key 

criteria: capacity factor (CF), which is widely utilized 
as a primary decision factor, and annual average energy 
output (Darwish et al., 2019).

In this investigation, the capacity factor is considered 
an evaluation metric for choosing the suitable turbine 
based on the observed satellite data. Table  19 displays 
the annual average energy output and capacity fac-
tor associated with each turbine type listed in Table 18, 
based on the observed satellite data for both locations. 
The findings indicate that among the various turbine 
models, the Goldwind model exhibits the most favora-
ble performance. Specifically, the turbine GW 171/3850 

Fig. 7  Scatter plots of wind speed prediction for Dataset 1 and Dataset 2
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distinguishes itself as the most fitting choice, demonstrat-
ing the highest capacity factor for both locations (37.17% 
and 46.99% for Kutubdia and Cox’s Bazar, respectively). It 
is important to highlight that the turbines with a capacity 
factor equal to or exceeding 20% are considered viable for 
the respective sites (Islam et al., 2013).

Figure  11 shows the wind power curve or wind tur-
bine power performance curve of the highest CF turbine 
(Goldwind GW 171/3850), which illustrates the relation-
ship between observed wind speed and the electrical 
power output of a wind turbine for 120 m hub height. The 
curve shows how the turbine’s power output increases 
with higher wind speeds until reaching the rated power 
(Assareh et al., 2016). The power curves exhibit identical 
characteristics for both stations. The wind turbine begins 
to generate power at the cut-in wind speed, the minimum 
speed required for power generation. At the rated wind 
speed, the turbine achieves its maximum designed power 

output. Beyond the cut-out wind speed, the turbine shuts 
down to prevent damage. This is the maximum wind 
speed the turbine can withstand.

In low-wind sites, ensuring a continuous power sup-
ply requires the integration of a hybrid system. This sys-
tem combines a wind turbine with an alternative power 
source, such as solar panels or a small-scale generator, to 
supplement energy production during periods of low or 
no wind. If the wind speeds are inadequate, the hybrid 
system consistently shifts to an alternative power source 
so that it can allow the turbine to uphold operating. A 
reliable and uninterrupted power supply can be secured 
by this approach, which is particularly effective for low- 
and unstable wind sites. A hybrid system upgrades the 
overall performance and sustainability of the energy gen-
eration system in such conditions by tactically adjusting 
the wind and secondary energy sources.

Fig. 8  Histograms and Gaussian kernel density functions of wind speed prediction for Dataset 1 and Dataset 2
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Fig. 9  Boxplots of the prediction error for Dataset 1 and Dataset 2

Table 13  Quartile percent of the prediction error for Dataset 1 (minimum Std. deviation and IQR are bolded)

Model Quartile percentile for Dataset 1: Kutubdia Quartile percentile for Dataset 1: Cox’s Bazar

Std 25% 50% IQR 75% Std 25% 50% IQR 75%

MLR 0.6682 − 0.3211 − 0.0657 0.6059 0.2848 1.0808 − 0.6213 − 0.1224 0.9999 0.3786

Lasso 0.6794 − 0.3396 − 0.1186 0.6483 0.3088 1.0883 − 0.6093 − 0.1852 0.9948 0.3855

Ridge 0.6682 − 0.3211 − 0.0657 0.6059 0.2848 1.0808 − 0.6219 − 0.1228 1.0009 0.3790

Elastic Net 0.6745 − 0.3303 − 0.0960 0.6256 0.2953 1.0858 − 0.6117 − 0.1659 0.9865 0.3748

KNN 0.6683 − 0.2858 − 0.0286 0.5716 0.2858 1.0619 − 0.4573 0.0000 0.7718 0.3145

DT 0.6668 − 0.2919 − 0.0797 0.6025 0.3107 1.0531 − 0.3992 − 0.0798 0.6845 0.2853

RF 0.6445 − 0.2855 − 0.0602 0.5458 0.2603 1.0090 − 0.4448 − 0.0886 0.7188 0.2740

GBR 0.6381 − 0.2884 − 0.0584 0.5488 0.2605 1.0012 − 0.4446 − 0.0872 0.7179 0.2732

AdaBoost 0.6975 − 0.3864 − 0.0675 0.6025 0.2161 0.9716 − 0.7077 − 0.2351 0.9650 0.2573

XGBoost 0.6348 − 0.2915 − 0.0573 0.5569 0.2654 1.0001 − 0.4415 − 0.0765 0.7054 0.2640

LightGBM 0.6380 − 0.2859 − 0.0617 0.5409 0.2549 0.9972 − 0.4294 − 0.0798 0.6943 0.2649

CatBoost 0.6278 − 0.2902 − 0.0549 0.5408 0.2506 0.9953 − 0.4294 − 0.0803 0.6962 0.2668

LSTM 0.6485 − 0.3372 − 0.0902 0.5819 0.2447 1.0083 − 0.4855 − 0.1176 0.7614 0.2759

GRU​ 0.6520 − 0.3057 − 0.0773 0.5862 0.2804 1.0177 − 0.3890 − 0.1052 0.7974 0.4083
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Various strategies are involved in the reliable opera-
tion of a wind power plant to ensure the effectual and 
firm performance of the wind turbines as well as the 
overall plant. Accurate prediction of wind speeds lays 
out informative perceptions that are devoted to the opti-
mization and stability of the operation of plants. Some 
key techniques regarding the reliable operation of wind 
power plants are mentioned here (Commission, 2022):

•	 Variations in wind conditions can be anticipated 
by the operators using wind speed predictions. The 
plant can optimize energy production and maximize 
the efficiency of power generation by balancing the 
pitch and yaw of the turbines based on predicted 
wind speeds.

•	 The employment of advanced control systems to 
manage loads on the turbines can be enabled using 
prediction of wind speeds in advance. The operating 
parameters of the turbines can be adjusted by the 
control algorithms to guarantee optimal performance 
and minimize wear and tear, benefiting to the long-
term stability of the equipment.

•	 Accurate prediction of wind speeds can be used to 
manage the integration of wind power into the elec-
trical grid. Uncertain swings can be anticipated by 
grid operators in energy production. Thus, proac-
tive measures, such as adjusting energy reserves or 
activating alternative sources, can be undertaken to 
maintain grid stability.

•	 Operators can antedate the time period of increased 
stress on turbine components using predictions of 
wind conditions. This allows planning maintenance 
activities during periods of lower wind speeds, 
reducing downtime and confirming the reliability of 
the plant.

•	 Wind speed forecast can help distribute effective 
resources, including human resources and spare 
parts. Operators can maintain inspections, repairs, 
and maintenance tasks relying on predicted wind 
conditions. Thus, they can optimize the allocation of 
resources to enhance the system reliability.

•	 Grid operators, energy market participants, and plant 
owners who rely on a stable and predictable energy 
output for planning and operational decision-making 
can be anticipated by wind speed predictions.

•	 Precise wind speed predictions can be used by 
utilities and grid operators for long-term planning 
and grid development. Predicting future wind 
conditions helps in determining the feasible locations 
for new wind projects and planning the extension 
of the existing grid infrastructure to assist increase 
renewable energy capacity.

Conclusion and recommendations
The unpredictability of wind turbine production due 
to variations in wind speeds poses a challenge for wind 
power plants. To address these, accurate wind speed 
forecasting emerges as a pivotal strategy for operational 

Table 14  Quartile percent of the prediction error for Dataset 2 (minimum Std. deviation and IQR are bolded)

Model Quartile percentile for Dataset 2: Kutubdia Quartile percentile for Dataset 2: Cox’s Bazar

Std 25% 50% IQR 75% Std 25% 50% IQR 75%

MLR 0.7008 − 0.4395 − 0.0139 0.8436 0.4041 0.7372 − 0.4412 − 0.0076 0.8657 0.4245

Lasso 0.7076 − 0.4460 − 0.0233 0.8483 0.4023 0.7475 − 0.4609 − 0.0149 0.8856 0.4247

Ridge 0.7008 − 0.4397 − 0.0138 0.8439 0.4042 0.7372 − 0.4413 − 0.0076 0.8658 0.4245

Elastic Net 0.7062 − 0.4522 − 0.0226 0.8513 0.3992 0.7471 − 0.4636 − 0.0143 0.8886 0.4250

KNN 0.6226 − 0.3589 − 0.0039 0.7144 0.3556 0.6634 − 0.3722 0.0039 0.7433 0.3711

DT 0.6740 − 0.4009 − 0.0105 0.7798 0.3789 0.7052 − 0.4224 − 0.0109 0.8216 0.3992

RF 0.6433 − 0.3806 − 0.0050 0.7451 0.3645 0.6672 − 0.4013 − 0.0085 0.7703 0.3690

GBR 0.5871 − 0.3304 − 0.0112 0.6538 0.3234 0.6191 − 0.3473 0.0003 0.6915 0.3442

AdaBoost 0.7181 − 0.4642 − 0.0178 0.8704 0.4061 0.7544 − 0.4810 − 0.0311 0.8953 0.4143

XGBoost 0.5856 − 0.3321 − 0.0104 0.6529 0.3208 0.6199 − 0.3510 − 0.0034 0.6966 0.3456

LightGBM 0.5871 − 0.3327 − 0.0109 0.6521 0.3194 0.6192 − 0.3464 − 0.0026 0.6899 0.3436

CatBoost 0.5749 − 0.3198 − 0.0052 0.6369 0.3171 0.6119 − 0.3374 − 0.0007 0.6730 0.3356

LSTM 0.6088 − 0.2954 0.0561 0.7048 0.4095 0.6580 − 0.3558 0.0254 0.7682 0.4124

GRU​ 0.6078 − 0.3200 0.0394 0.7097 0.3897 0.6757 − 0.3779 0.0311 0.8108 0.4329
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stability. Site feasibility and turbine choosing also to 
rely on the forecasts of wind speed. This study, con-
ducted in the coastal region of Bangladesh, evaluates 
fourteen ML models for short-term wind speed predic-
tion. Among them, the CatBoost model surpasses other 
models, demonstrating regression coefficients exceeding 
50%–60% for Dataset 1 and surpassing 85% for Dataset 
2. This showcases the model’s substantial potential for 
accurate prediction of wind speed in the realm of wind 
energy potential. Additionally, the research underscores 
the necessity of site-specific wind speed feasibility stud-
ies associated with the capricious nature of wind prior 

to project implementation. The Weibull model param-
eters indicate that the wind power density of Cox’s Bazar 
is greater than that of Kutubdia for both observed and 
predicted speed data. Moreover, the Goldwind model 
emerges as a viable turbine option with a favorable 
capacity factor for both locations. While this study has 
shed light on the dynamics of wind speed forecasting, it 
is important to acknowledge its limitations.

However, BMD data only record the integer value that 
caused the round-off error. As a result, all ML models 
end up doing moderately well on average in predicting 
the BMD data. In contrast, NASA data display a notable 

Table 15  Performance comparison of the suggested models with the models from prior studies

NREL: National Renewable Energy Laboratory; MLR: multiple linear regression; LR: linear regression; SVR: support vector regression; ARMA: autoregressive moving 
average; ARIMA: autoregressive integrated moving average; ANN: artificial neural network; GPR: Gaussian progress regression; BTs: bagged regression trees; BNN: 
Bayesian neural network; BPN: back propagation network; NARX: nonlinear autoregressive model process with exogenous inputs; MIFS: mutual Information feature 
selection; MPFFNN: multiple perceptron feed-forward neural network; RBF: radial basis function; RF: random forest; LSTM: long short-term memory; MV-LSTM: 
multivariate long short-term memory; GB: gradient boosting; XGBoost: extreme gradient boosting; CatBoost: category boosting; AdaBoost: adaptive boosting; KNN: 
K-nearest neighbors; DTR: decision tree regressor; SVM: Support vector machine; RVM: Relevance vector machine; LightGBM: Light gradient boosting machine; R2: 
coefficient of determination; RMSE: root mean square error; MAE: mean absolute error; MAD: mean absolute deviation; MAPE: mean absolute percentage error; MBE: 
mean bias error; MRE: mean relative error; NMAE: normalized mean absolute error; NSE: Nash–Sutcliffe efficiency

Ref Year Region/country Data resolution Methods Best performer Performance

Shawon et al. (2021) 2021 NA Hourly ARMA, ARIMA, SVR, and ANN Polynomial SVR RMSE = 0.552
MAPE = 5%

Mohsin et al. (2021) 2021 NA 3− h interval BNN, and Lasso BNN MAPE = 19.01%
NMAE = 0.003

Hanoon et al. (2022) 2022 14 regions in Malaysia Daily GPR, SVR, and BTs GPR RMSE = 0.18144
MSE = 0.03292
NSE = 0.26957
MAE = 0.13498
R2 = 0.38115

S. Kumar P (2019) 2019 Waterloo, Canada 15-min interval BPN, BPN with MIFS, RBF, RBF 
with MIFS, NARX, and NARX 
with MIFS

NARX with MIFS RMSE = 0.5814
MAE = 0.4381

Elsaraiti & Merabet (2021) 2021 Halifax, Canada Hourly ARIMA, and LSTM LSTM RMSE = 3.124
MAE = 2.457

Liu & Chen (2019) 2022 East Jerusalem, Palestine 3-h interval MLR, ridge, lasso, RF, SVR, 
and LSTM

RF MAE = 0.894
MSE = 1.345
MAD = 0.715
R2 = 0.435

Xie et al. (2021) 2021 Yanqing, and Zhaitan, 
Beijing, China

Hourly ARMA, single-variable LSTM, 
and MV-LSTM

MV-LSTM RMSE = 1.1460
MAE = 0.8468
MBE = 0.0276
MAPE = 0.6412

Malakout (2023) 2023 Turkey Monthly LightGBM, GBR, AdaBoost, 
Elastic net, lasso, 
and ensemble method 
(LightGBM and AdaBoost)

Ensemble method RMSE = 0.2080
MAE = 0.1410
MAPE = 0.0292
R2 = 0.997

Krishnaveni et al. (2021) 2021 Las Vegas, USA Hourly MLR, Lasso, SVR, 
and MPFFNN

SVR MSE = 0.011217
MAE = 0.080115

This study 2023 Kutubdia and Cox’s Bazar, 
Bangladesh

3-h interval MLR, Ridge, Lasso, Elastic 
Net, KNN, DT, RF, GBR, 
AdaBoost, XGBoost, 
LightGBM, LSTM and GRU​

CatBoost MSE = 0.3744
MAE = 0.4415
R2 = 0.8670
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Fig. 10  Probability density function of observed and predicted wind speed data for both stations

Table 16  Weibull k and c parameters, mean wind speed, wind power density, and generation scale at 50 m

k: shape parameter; c: scale parameter; Vavg: average wind speed

Dataset\factor k c Vavg(m/s) Wind power density 
(W/m2)

Wind power 
class

Generation 
scale

Dataset 2
(observed)

Kutubdia 2.3794 5.6301 4.9903 124.6224 1 Poor

Cox’s Bazar 2.4376 6.3896 5.6660 179.0635 1 Poor

Dataset 2
(predicted)

Kutubdia 2.5164 5.6347 5.003 120.2248 1 Poor

Cox’s Bazar 2.5959 6.3872 5.6729 171.7581 1 Poor

Table 17  Weibull k and c parameters, mean wind speed, wind power density, and generation scale at 120 m

k: shape parameter; c: scale parameter; Vavg: average wind speed

Dataset\factor k c Vavg(m/s) Wind power 
density (W/m2)

Wind power 
class

Generation scale

Dataset 2
(observed)

Kutubdia 2.3795 6.5937 5.8443 200.1749 2 Marginal

Cox’s Bazar 2.4376 7.4830 6.6355 287.6126 2 Marginal

Dataset 2 (predicted) Kutubdia 2.5164 6.5990 5.8560 193.1091 1 Small

Cox’s Bazar 2.5959 7.4802 6.6437 275.8756 2 Marginal
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improvement, achieving an accuracy increase of over 
20% compared to BMD data despite covering a broader 
geographical range compared to a specific point loca-
tion. Training the ML models with parameter tuning 
with 62,808 data samples consumes more time compared 

to training a single model. The model can be suscepti-
ble to overfitting, particularly in  situations with limited 
sample sizes. In site and turbine selection, a limitation of 
the study is the exclusive reliance on the MLE-Weibull 
model for wind resource assessment, without consid-
ering the potential use of alternative models employing 
various optimization methods. Moreover, a constraint 
of this study lies in the challenge of presenting a detailed 
illustration of the correlation between reliable wind plant 
operation and the accuracy of wind speed predictions 
through data analysis.

Future investigations could extend this paradigm to 
long-term forecasting, further enhancing the efficacy 
of wind power ventures. Long-term data analysis could 
unveil seasonal wind patterns, providing valuable insights 
for project planning. Advanced ML and DL methods can 
be adopted, which may help mitigate the uncertainties 
associated with wind speed prediction. Accurate predic-
tions of wind speed for site and turbine selection necessi-
tate dependable ground station measurements alongside 
thorough site inspections. Additionally, incorporating 
additional environmental factors like terrain, land use, 
and geographical features could enhance predictive 
accuracy as well as wind resource assessment. Various 
roughness lengths can be employed in evaluating wind 
resources when applying the height conversion logarith-
mic law. Evaluating economic feasibility and conducting 
thorough environmental impact assessments are crucial 
steps for comprehensive project planning.

Table 18  Characteristics of some on-shore wind turbines for the chosen sites

Turbine model Rotor 
diameter 
(m)

Hub height (m) Rated 
power (kW)

Cut-in 
speed (m/s)

Rated wind 
speed (m/s)

Cut-out 
speed 
(m/s)

Gamesa G114-2.0 M 114 93/120/140 2000 2.5 12 25

Enercon E-160 EP5 E1 160 120/166 4600 2.5 12 22

Doosan WinDS3000/100 100 90/site specific 3000 3 12 25

Adwen AD 8–180 180 Site specific 8000 3 12 30

Goldwind GW 155/4500 155 95/110/140/project specific 4500 2.5 10.8 26

Goldwind GW 171/5000 171 100—185/site specific 2500 2.5 9.5 24

Goldwind GW 171/3850 171 100—185/site specific 3850 2.5 8.8 17

Senvion 2.4M114 113 95/120 2430 3 13 18

Vestas V172-7.2 EnVentus 172 112/117/150/164/166/175/site specific 7200 3 12 25

Envision EN140-3.0 140 90 m/110 m/125 m/140 m/site specific 3000 3 12 20

Nordex N149/5.X 149.1 up to 164 5000 3 12 20

Nordex N133/4800 Delta 133.2 78/83/110/site specific 4800 3 12 20

Table 19  Annual energy output and capacity factor of 
considered turbines for 120 m hub height

Ea: annual average energy output; CF: capacity factor

Weather station Kutubdia Cox’s Bazar

Turbine model Ea (kWh/yr) CF (%) Ea (kWh/yr) CF (%)

Gamesa G114-2.0 M 3,412,288.31 19.48 4,708,609.98 26.88

Enercon E-160 EP5 E1 7,672,150.08 19.04 10,829,764.53 26.88

Doosan WinDS3000/100 4,543,199.44 17.29 6,605,123.45 25.13

Adwen AD 8–180 12,115,198.50 17.29 17,613,662.95 25.13

Goldwind GW 155 / 
4500

9,592,666.43 24.33 13,122,283.71 33.29

Goldwind GW 171 / 
5000

7,021,850.59 32.06 9,159,535.18 41.82

Goldwind GW 171 / 
3850

12,535,495.38 37.17 15,848,188.27 46.99

Senvion 2.4M114 3,009,007 14.14 4,453,514.73 20.92

Vestas V172-7.2 
EnVentus

10,903,678.65 17.29 15,852,296.28 25.23

Envision EN140-3.0 4,543,197.21 17.29 6,604,677.47 25.13

Nordex N149/5.X 7,571,995.36 17.29 11,007,795.78 25.13

Nordex N133/4800 
Delta

7,269,115.54 17.29 10,567,483.94 25.13
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