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Abstract 

Hydrogen serves as a renewable, clean energy carrier, and the critical development of technologies for safer and sim-
pler storage and transportation is imperative for addressing global warming. There is also a growing demand 
for efforts to capture and utilize  CO2 to tackle similar issues. Consequently, considerable attention has been drawn 
to carriers that chemically store hydrogen. Hydrogen can be stored and released through hydrogenation and dehy-
drogenation. Notably, the storage and release of hydrogen via  CO2 hydrogenation and subsequent dehydrogena-
tion of its hydrogenation product could potentially bolster the future hydrogen economy, rendering it an appealing 
option as a  CO2 circulation hydrogen carrier (CCHC). To leverage CCHC for various applications, a catalytic process 
enabling the reversible storage and release of hydrogen is essential. This review focuses on CCHC candidates, such 
as methanol (MeOH), dimethyl ether (DME), and formic acid (FA), summarizing recent catalytic approaches for hydro-
gen production through pivotal dehydrogenation processes within the CCHC cycle.

Keywords Hydrogen, Carbon dioxide, Carrier, Hydrogenations, Dehydrogenations, Circulation, Methanol, Dimethyl 
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Introduction
In recent years, the spotlight has shifted toward the 
impacts of global warming, sparking interest in energy 
supply. Anomalous climate patterns stem from rising 
greenhouse gas concentrations, making emission reduc-
tion a pivotal solution to combat global warming (Chang 
et al., 2011). Hydrogen energy stands out as an effective 
method for this endeavor. Yet, hydrogen, existing as a 
gas under standard conditions, necessitates novel tech-
nologies for its storage, transportation, and utilization. 
Its low-density mandates either liquefaction at incredibly 

low temperatures or compression at high pressures for 
storage and transit. Safety concerns surrounding hydro-
gen highlight the urgent need for the safety of hydrogen 
technologies to address these challenges. The practical 
utilization of hydrogen fuel remains unattainable until 
the development of these technologies (Behroozsarand 
et al., 2010).

Hydrogen is highly abundant in various natural sources 
such as seawater, rain, river water, and biomass. Industri-
ally, hydrogen can be extracted from water, fossil-derived 
sources, and hydrogen sulfide. The production of hydro-
gen from these sources typically falls into four categories: 
electrical, thermal, biochemical, and photonic (Agency, 
2023; Dincer, 2012).

Currently, several industrial methods produce hydro-
gen through thermal processes, but they pose problems 
due to the substantial emissions of greenhouse gases, 
primarily  CO2, which contribute significantly to global 
warming. For instance, over 95% of the roughly 70 mil-
lion tons of  H2 produced annually come from petro-
chemical fuels (75% natural gas and 23% coal) using 
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steam methane reforming (SMR) (Hurtubia & Sauma, 
2021; Pade & Guimaraes, 2007). Although an efficient 
process, SMR emits high concentrations of  CO2, lead-
ing to the classification of this hydrogen as "gray hydro-
gen", which is considered to be carbon neutral. Hydrogen 
generated incidentally during other chemical processes 
is referred to as “white hydrogen” (Aimikhe & Eyank-
ware, 2023; Hermesmann & Müller, 2022). Conversely, 
advancements in technology for capturing and storing 
the high-concentration  CO2 generated during hydrogen 
production have led to the emergence of “blue hydrogen” 
(Monkman & MacDonald, 2017). Projects implementing 
SMR while capturing and storing  CO2 have been under-
way in Canada and the United States since mid-2017.

A small fraction, approximately 4%, of hydrogen pro-
duction methods involve water electrolysis, a method 
increasingly utilized in various locations (Kirchofer et al., 
2012). When hydrogen is produced via electrolysis using 
electricity sourced from renewable energy, it is termed 
“green hydrogen” (Hren et  al., 2023). The efficiency of 
hydrogen production through electrolysis exceeds 80% 
(higher heating value HHV). Primary methods encom-
pass alkaline electrolysis (AEL), proton exchange mem-
brane (PEM) based electrolysis, and electrolysis in solid 
oxide electrolyzer cells (SOECs). Notably, AEL and PEM 
systems are commercially available and widely adopted, 
whereas SOEC is currently in the developmental phase, 
showing promise for co-electrolysis applications (such 
as direct synthesis, gas production, and Fischer–Tropsch 
synthesis), thus presenting an attractive option for  CO2 
conversion (Kirchofer et  al., 2012). Additionally, ongo-
ing developments focus on reusing the  CO2 generated 
from blue hydrogen production processes and the  CO2 
captured via direct air capture (DAC), with increas-
ing research on  CO2 as a renewable carbon resource 
(Dimitriou et al., 2015; Dorner et al., 2010; Saeidi et al., 
2014; Sakakura et  al., 2007). Methods for  CO2 conver-
sion encompass thermocatalytic (TC), (Galadima & 
Muraza, 2019) electrochemical (EC), (Lin et  al., 2020) 
photochemical (PC), (Kuramochi et  al., 2018), and bio-
logical (Bio) (Barin et al., 2018) processes. These technol-
ogies facilitate the transformation of  CO2 into methane, 
methanol (MeOH), dimethyl ether (DME), formic acid 
(FA), alkanes (such as ethane), and alkenes (such as eth-
ylene) using carbon monoxide (CO) as an intermediary 
substance. This review centers on exploring the poten-
tial applications of such liquid organic hydrogen car-
riers (LOHCs) (Bourane et  al., 2016; Catizzone et  al., 
2021; Chatterjee et al., 2021; Crabtree, 2017; Eppinger & 
Huang, 2017; Guo et  al., 2021; Hren et  al., 2023; Kawa-
nami et al., 2017; Li & Kawanami, 2023; Niermann et al., 
2019; Preuster & Albert, 2018; Preuster et al., 2017; Sang 
et  al., 2023; Teichmann et  al.,  2011, 2012, 2016; Zhong 

et al., 2018a, b) sourced from  CO2 as hydrogen carriers, 
specifically designated as  CO2 circulation hydrogen car-
riers (CCHC), within the framework of carbon neutral 
hydrogen storage and release (CNHSR) systems (Fig. 1).

LOHCs are recognized for their cost-effectiveness, 
safety, and long-term stability, qualities that make them 
ideal for hydrogen storage and transportation under 
ambient conditions. These compounds are characterized 
by their ability to undergo reversible dehydrogenation 
and hydrogenation processes, and they possess a substan-
tial hydrogen capacity, making them well-suited for use 
in CNHSRs. Key examples of LOHCs include benzene/
cyclohexane pairs (Biniwale et al., 2008; Saito and Okada, 
2016) and various organic heterocycles with a particu-
lar focus on nitrogen-containing aromatic compounds, 
which have undergone extensive study (Crabtree, 2017; 
Stark et  al., 2015). The potential applications of a range 
of LOHCs, such as N-ethylcarbazole, dibenzyltoluene, 
toluene, and 1,2-dihydro-1,2-azoline, are being actively 
explored. These applications encompass diverse areas 
such as energy storage in buildings (Adamtz et al., 2017), 
energy transportation (Preuster et al., 2017), vehicle fuel, 
and even innovative adaptations for cement plants.

In a CNHSR system employing CCHCs, there is no 
release of  CO2 into the environment during the stor-
age, transport, and production of hydrogen. However, 
to materialize this system in practice, a technology for 
recovering the  CO2 produced post-hydrogen generation 
from organic hydrogen storage materials is necessary. 
CCHC requires a technology capable of selectively cap-
turing and re-generating  CO2 from exhaust gases pro-
duced during hydrogen production. The  CO2 recovery 
technologies used in post-combustion and pre-combus-
tion methods in fossil fuel-based thermal power plant 
can be applied. For instance, in the case of post-combus-
tion, the Cansolv®  CO2 Capture System by Shell (Camp-
bell, 2014) or the KS-1 (or KS-21) & KM CDR Process 
by Mitsubishi Heavy Industries (Miyamoto et  al., 2017) 
can be utilized. These systems absorb  CO2 gas using an 
aqueous organic amine solution and re-generate liquid 
 CO2 with a 90% capture yield from 13.4% of the  CO2 gas. 
In the pre-combustion method, for example, the Selexol 
process by UOP LLC recovers  CO2 using absorbents 
(dimethyl ether and propylene glycol), producing liq.  CO2 
with a 90% capture yield from 42% of  CO2 (Bui et al. 2018; 
Hanifa et al., 2023; Osman et al., 2021; Peu et al., 2023). 
The capture costs for  CO2 are approximately $45/ton for 
post-combustion and $53/ton for pre-combustion, which 
are relatively similar. In contrast, the  CO2 capture cost by 
Direct Air Capture is estimated to be between $500 and 
$700 per ton of  CO2. Therefore, in the CCHC process, it 
is preferable to select a method with a  CO2 capture yield 
as close to 100% as possible.
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Hence, reversible dehydrogenation/hydrogenation at 
mild temperatures is desirable. Hydrogenation reactions 
are typically exothermic and thermodynamically favora-
ble, whereas dehydrogenation reactions are endothermic 
and necessitate high temperatures. Therefore, the devel-
opment of efficient catalysts for dehydrogenation holds 
crucial importance. This review delves into the potential 
of MeOH and DME, derivatives of MeOH, and FA, as 
CCHCs, at room temperature and atmospheric pressure.

Methanol
Production of methanol from  CO2
Methanol (MeOH) serves as an important raw material 
that is widely used in various applications, including as 
a fuel, a chemical feedstock, and as a non-corrosive, 
easy-to-handling solvent for chemical reactions. There-
fore, there has been and is an active pursuit of the direct 
synthesis of MeOH via  CO2 hydrogenation (Alvarez 
et al., 2017; Li & Chen, 2019; Rodriguez et al., 2015). In 
addition, MeOH acts as a reactive intermediate in other 
processes, such as its conversion to gasoline (methanol 
to gasoline process; MTG) (Bjorgen et  al., 2008; Olsbye 
et al., 2012) or to olefins (MeOH to olefines; MTO), (Ples-
sow & Studt, 2017; Tian et  al., 2015; Van Speybroeck 
et  al., 2014), yielding hydrocarbons and olefins. Con-
sequently, the conversion of  CO2 to MeOH offers the 
opportunity to significantly reduce  CO2. The direct 
hydrogenation of  CO2 to MeOH is a simple and favora-
ble process (Eq.  1). (Pérez-Fortes et  al., 2016) However, 
as shown in Eq.  1, both ΔH and ΔS are negative, limit-
ing the conversion of  CO2 to MeOH as the reaction tem-
perature increases. Alongside CO, numerous byproducts 
such as hydrocarbons, FA and ethanol can be formed. 
(Bulushev & Ross, 2018; Chen et al., 2015) Thus, there is 

a pressing need to develop catalysts with a high selectiv-
ity for MeOH (Saeidi et al., 2021).

In heterogeneous catalysis, significant attention has 
focused on metal-based catalysts, particularly Cu-based 
ones. (Saeidi et  al., 2021) Other catalysts, including Pd 
or bimetallic systems, have also been utilized for  CO2 
hydrogenation to MeOH. In homogeneous catalysis, 
noble-metal-based (such as Ru or Ir) complex catalysts 
demonstrate high activity in producing MeOH from 
 CO2. (Kothandaraman et al., 2016; Sordakis et al., 2016; 
Wesselbaum et  al., 2015) Additionally, Co, Mn, and Fe 
complexes among non-noble metals have been reported 
to catalyze the hydrogenation of  CO2 to MeOH. (Sch-
neidewind et  al., 2017) Homogeneous catalysts play an 
important and crucial role in deciphering new routes to 
get MeOH from  CO2. Milstein reported hydrogenation of 
 CO2 and CO to methanol using dearomatized PNN Ru-
pincer complexes from pyridine- and bipyridine-based 
tridentate ligands (Balaraman et  al., 2011). In the same 
year, Huff and Sanford et  al. reported methanol synthe-
sis in the presence of homogeneous Ru catalysts (Ru-1 
and Ru-2) and Lewis acid (Sc(OTf)3, OTf = 1,1,1-trifluo-
romethane sulfonate) at low temperature. (Huff & San-
ford, 2011) To achieve methanol production from  CO2, 
they introduced three different catalysts for cascade reac-
tions: (a) hydrogenation of  CO2 with Ru-1, (b) esterifi-
cation to generate a formate ester with Sc(OTf)3, and 
(c) hydrogenation of the ester to release methanol with 
Ru-2 (Fig.  2). These include Hu’s first homogeneous 
catalysts for hydrogenation of  CO2 derivatives (Hu et al., 
2014). The Huff and Sanford’s alcohol and amine-assisted 
pathways, and several other homogeneous systems that 
perform well at 100–140  °C. Same catalysts show low 
turnover numbers at 50–70  °C below 100  °C. (Huff & 
Sanford, 2011; Rezayee et al., 2015).

Then in 2012, Wesselbaum et  al. reported, with water 
as a medium, additive-free  CO2-to-methnaol reac-
tion has been achieved using Ru-Triphos catalyst Ru-4 
(Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane. 
(Wesselbaum et  al., 2015) After these initial studies, 
extensive mechanistic investigations and DFT mod-
eling helped understand hydrogenation catalytic routes 
and rationally tune molecular catalysts. Homogene-
ous catalysts have enabled integrated  CO2 capture and 
use recently. Kothandaraman et  al. have shown amine-
assisted systems that recycle  CO2 from air into carbon-
neutral methanol. (Kothandaraman et al., 2016) The same 
group recently created the first hydroxide-based inte-
grated system. (Sen et al., 2020) Homogeneous catalysis 
has pioneered green and energy-efficient transformations 

(1)
CO2 + 3H2 → CH3OH+H2O �H = −49.5 kJ/mol

Fig. 1 Carbon dioxide circulation hydrogen carriers (CCHCs) of liquid 
organic hydrogen carriers (LOHCs)
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like  CO2 and CO to methanol and will continue to help 
realize sustainable, green, carbon-neutral processes.

As a route to produce MeOH from  CO2, there is also 
generation by the disproportionation of FA. Initially, FA 
is produced from  CO2 and  H2, and then MeOH is gen-
erated from the produced FA by disproportionation 
(reactions 2 and 3). However, the competitive reaction 4 
occurs, so improving selectivity is a challenge.

In 2013, Miller et  al. reported the generation of 
methanol by FA disproportionation in the presence 
of [Cp*Ir(BPY)H2O](OTf)2 Ir-1 in aqueous solution 
(BPY = 2,2’-bipyridine, OTf = trifluoromethane sul-
fonate). (Miller et al., 2013) FA was converted to MeOH 
with 34 of TON and 1.4  h−1 of TOF in a sealed vessel at 
80  °C for 24  h, but the yield of MeOH did not exceed 
1.9% because the dehydrogenation of formic acid was 
preferentially proceeding. In 2014, Savourey et  al. 
reported formic acid disproportionation using a Ru 
catalyst. (Savourey et  al., 2014) They were success-
ful in achieving a methanol yield of 50.2% from formic 
acid by adding methylsulfonate to [Ru(COD)(methy-
lallyl)2] (COD: cyclooctadienyl) and a supporting ligand 
(Triphos). DFT calculations have stated that dispropor-
tionation is promoted under high pressure. In 2015, Par-
kin et  al. reported methanol disproportionation from 
formic acid using a non-precious metal molybdenum 
complex (CpMo(PMe3)2(CO)H) Mo-1 with a TOF of 
54   h−1. (Neary & Parkin, 2015) In 2021, Alberico et  al. 
also reported a methanol selectivity of 30% and TON 69 
using a Mo complex under 6 MPa of hydrogen pressure. 
(Alberico et  al., 2021) In 2016, Sordakis and Tsurusaki 
were successful in obtaining methanol with a selectivity 
of 97% from FA using catalysts such as [Cp*Ir(4-DHBP)
H2O]SO4 Ir-2 (4-DHBP: 4,4’-dihydroxy-2,2’-bipyridyl) 

(2)CO2 +H2 → HCOOH+H2O

(3)3HCOOH → CH3OH+ 2CO2 +H2O

(4)HCOOH → CO2 +H2

under high-pressure conditions of 10  MPa of hydrogen 
pressure with sulfuric acid as an acid catalyst. (Sordakis 
et al., 2016, 2017; Tsurusaki et al., 2017) Furthermore, by 
raising the hydrogen pressure to 20 MPa, they confirmed 
the conversion of 99% of formic acid and the produc-
tion of 1.22 mmol of methanol from 10 mmol of formic 
acid. Additionally, by using [Cp*Ir(5-DMBP)H2O]SO4 
(5-DMBP: 5,5ʹ-dimethyl-2,2-bipyridine), they improved 
the TON to 1314 and methanol selectivity to 47.1%. In 
2021, Fujita et al. reported a formic acid conversion rate 
of 100%, methanol yield of 28%, and TON 191 by per-
forming formic acid disproportionation at 185  °C using 
a dinuclear Cp*Ru complex generated from SnO and Ru 
complex Ru-6. (Fujita et al., 2021) (Fig. 3).

Hydrogen production from methanol
MeOH has a high H-to-C ratio of 4:1 and can undergo 
conversion to  H2 at a relatively low temperature of 
around 250 ℃, according to Eq. 5. (Palo et al., 2007) This 
sets it apart from methane, given MeOH’s ease of activa-
tion at lower temperatures.

Recently, the MeOH dehydrogenation reaction has 
garnered significant attention in research. However, 
several of the reported catalysts tend to generate only 
one hydrogen molecule from a single methanol mole-
cule. The complexity arises in achieving high-purity  H2 
due to the byproduct CO, impacting MeOH dehydroge-
nation suitability for use in fuel cells and similar appli-
cations. To tackle this issue, diverse catalysts have been 
developed. The most prevalent heterogeneous catalysts 
rely on Cu due to their high activity and selectivity. 
The Cu/ZnO catalyst employed in MeOH synthesis is 
also widely used in dehydrogenation reactions due to 
its operation at relatively low temperatures. However, 
this catalyst poses a high risk of spontaneous ignition 
(Lindstrom & Pettersson, 2001). Zn in Cu/ZnO is rec-
ognized for its role in preventing the sintering of Cu, 

(5)
CH3OH+H2O → CO2 + 3H2 �H298K = +49.7 kJ/mol

Ru

PMe3
Me3P

Me3P OAc
Cl

PMe3
+ Sc(OTf)3

N

N
Ru+

OC

P

tBu
tBu H

Ru-1 (Cat. A) Ru-2 (Cat. C)Cat. B

Fig. 2 Cascade reaction for the methanol synthesis and the Ru homogeneous catalysts and Lewis acid  (Reprinted with permission from Huff, C.A. 
et al. Copyright 2011, American Chemical Society)
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thereby enhancing the catalyst’s performance (Xu et al., 
2017). Although the influence of ZnO on the active 
site’s morphology has been suggested (Hadden et  al., 
1997; Ovesen et al., 1997), the complete understanding 
of the mechanism behind reaction promotion remains 
elusive (Rameshan et al., 2012).

In the case of a heterogeneous catalyst, Yao et  al. 
(2006) and Zhou et  al. (2016) used  ZrO2 as a support 
to enhance the MeOH dehydrogenation reaction on 
the Cu catalyst. Other researchers explored MeOH 
dehydrogenation reactions using  SiO2, barium oxides, 
and  Al2O3, among others. Qing et  al. studied cata-
lyst deactivation after prolonged operation using Cu/
SiO2, attributing it to Cu coking and  SiO2 degradation 
of  SiO2 during the reaction. Agrell et  al. (2003), Jeong 

et al. (2006) and Qing et al. (2019) compared the cata-
lyst activity of Cu/ZnO with and without the addition 
of zirconia and alumina. In both studies, the Cu/ZnO/
ZrO2/Al2O3 catalyst exhibited the highest MeOH con-
version rate at the lowest tested CO concentration. This 
outcome is believed to stem from Zr promotion Cu dis-
persion and particle formation on the catalyst surface.

Numerous reports focused on MeOH dehydrogenation 
using heterogeneous Cu catalysts. However, precious 
metal catalysts such as Pd and Pt have been assessed to 
mitigate deactivation and achieve enhanced activity and 
stability. A majority of these catalysts are supported on 
silica or alumina and demonstrate notable activity. Nev-
ertheless, unlike Cu-based catalysts, these variants func-
tion at elevated reaction temperatures, favoring the 

PPh2

Ru
P
Ph2

Ph2P Ru
O

O

O
O

O

O PPh2
Ph2P PPh2+

Ru-4 Ru-5 Triphos

Ir
N

NH2O

2+

(OTf-)2

Ir-1

MoOC
Me3P PMe3

H

Mo-1

Ir
N

NH2O

2+

SO4
2-

OH

OH

Ir-2

N N

N N
N N

Fe CH

Cl

Cl

Fe-1

Ru Ru
C

N

HH

Ph

+ SnO

Ru-6
Fig. 3 Selected Ir, Ru, Mo homogeneous catalysts for methanol synthesis

Table 1 Selected list of catalysts for methanol dehydrogenation

(a) The reaction was conducted in autocleave made of glass
(b) The TON value was obtained from the results of 1 g of MeOH, 10 μmol of Ru-12, 80% of conversion after 10 h
(c) Initial TOF value using 0.01 mol% of Ru-12
(d) The reaction was conducted in autocleave
(e) The TOF value was the initial TOF within 1 h

Catalyst Solvent Additive Temp. (℃) Time (h) TON TOF  (h−1) Refs.

Ru-7 H2O 8 M KOH 72 552 350,000 200 (Nielsen et al., 2013)

Ru-8 Toluene KOH(a) 100 720 29,000 40 (Hu et al., 2014)

Ru-9 Dioxane/H2O 8 M KOH 82 4.5 – 55 (van de Watering et al., 2016)

Ru-10/Ru-11 H2O Triglyme 93.5 192 4200 21 (Monney et al., 2014)

Ru-12 H2O/THF – 90 10 2500(b) 24,000(c) (Rodriguez-Lugo et al., 2013)

Ir-3 H2O NaOH(d) 100 150 10,510 70 (Fujita et al., 2015)

Ir-4 H2O 0.5 M KOH
8 M KOH

94 16
60

1400
1900

326(e)

31
(Prichatz et al., 2017)

Fe-2 H2O 8 M KOH 91 46 9834 644 (Alberico et al., 2013)

Mn-1 H2O 8 M KOH
Triglyme

92 > 720 > 20,000 – (Anderez-Fernandez et al., 2017)
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production of syngas from MeOH (Li et  al., 2012; Palo 
et al., 2007), consequently increasing CO selectivity.

Homogeneous catalysts, as reported in 2013 by 
Nielsen et  al., utilized a Ru-pincer complex (Ru-7) to 
dehydrogenate MeOH under mild conditions (Table 1). 
(Nielsen et al., 2013) The reaction achieved a turnover 
number (TON) of 350,000 within 23 days at a relatively 
low temperature (< 100 °C), employing a MeOH–water 
mixture.  CO2 was captured as carbonate, with minimal 
byproducts such as CO or  CH4 (< 10  ppm). Hu et  al. 
investigated the dehydrogenation of MeOH catalyzed 
by a Ru-PNN pincer complex (Ru-8) in the presence 
of KOH. (Hu et  al., 2014) The catalyst effectively pro-
moted dehydrogenation in a MeOH and water–toluene 
mixture, displaying exceptional durability and sus-
tained reactivity even after MeOH re-addition. Eventu-
ally, it exhibited a TON of 29,000 after approximately 
30 days. Similarly, Watering et al. (2016) reported a Ru 
complex with a salen ligand (Ru-9) using KOH for reac-
tions in a 1,4-dioxane/H2O solution. The turnover fre-
quency (TOF) for MeOH dehydrogenation was 55   h−1, 
with no detection of CO but observed production of 
 H2, FA, and carbonates. Monney et  al. introduced a 
dual-catalyst system composed of [Ru(H)2(dppe)2] (Ru-
10) and a Ru-PNP pincer complex [Ru-MACHO-BH] 
(Ru-11), for MeOH dehydrogenation in the absence of 
a base. (Monney et al., 2014) While the Ru-10 catalyst 
exhibited the necessary catalytic activity for MeOH 
dehydrogenation, FA generation occurred under non-
basic conditions, diminishing its effectiveness. To 
address this, the author combined another catalyst 
(Ru-10) to develop a method for FA dehydrogenation. 
This approach sustained activity for 8  days, achieving 
 H2 production at a TON 4,200. Rodriguez-Lugo et  al. 
reported a Ru complex [K(dme)2][Ru(H)(trop2mad)] 
(Ru-12), featuring a chelating bis(olefin) diazadiene 
ligand, which fully dehydrogenated MeOH with an 
approximately 85% conversion rate in the absence of a 
base (Rodriguez-Lugo et al., 2013).

Based on the Ir complex catalyst, Fujita et al. an efficient 
Cp*Ir catalyst (Ir-3), which promotes dehydrogenation 
in MeOH/H2O (Fujita et al., 2015). Continuously adding 
MeOH using a syringe pump and investigating the robust-
ness of the catalyst, they observed that it maintained its 
activity for 150 h, ultimately exhibiting a TON of 10,510. 
Prichatz et  al. synthesized an Ir pincer complex (Ir-4) 
by transitioning the metal base from Ru to Ir (Prichatz 
et al., 2017). Under 0.5 M KOH in MeOH/H2O at 70 °C, 
the reaction achieved a TOF of 326  h−1 and a maximum 
TON of 1,400. Increasing the base concentration to 8 M 
resulted in a longer reaction time despite a decrease in the 
initial reaction rate, yielding a TON of 1900 in 60 h.

While precious metal-based complex catalysts exhibit 
high activity, there has been a push to develop cost-effective 
non-precious metal-based ones. Alberico et al. conducted 
MeOH dehydrogenation using a Fe pincer complex (Fe-2) 
with a similar structure to Ir complex (Alberico et al., 2013). 
Under 8 M KOH in MeOH/H2O at 91 °C, the TON after 
43 h was 6,270, with an initial TOF of 702   h−1. Reducing 
the amount of catalyst from 4.16 to 1 mmol resulted in a 
TON of 9,834 after 46 h, with a TOF of 644  h−1, confirm-
ing improved catalytic activity. However, the stability of the 
catalyst remained inferior to that of the Ru-pincer complex.

Anderez-Fernandez et  al. also reported that a Mn-
based complex catalyst (Mn-1) demonstrated MeOH 
dehydrogenation activity (Anderez-Fernandez et  al., 
2017). Building on prior research highlighting the effi-
ciency of pincer ligands in MeOH dehydrogenation, the 
Mn-pincer complex underwent examination. Under con-
ditions of 8  M KOH in MeOH/H2O at 92  °C, the TON 
was 54. Through optimization of reaction parameters 
and the addition of triglyme and 10 molar equivalents 
of PNP-iPr ligand, the activity of the catalyst remained 
stable for at least one month, boasting a TON exceeding 
20,000. This complex exhibited superior stability in com-
parison to the analogous Fe pincer complex.

Dimethyl ether
Dimethyl ether (DME) stands out as a viable alterna-
tive clean fuel (Marchionna et al., 2008; Song, 2006). Its 
unique chemical characteristic lies in having solely CH 
and CO bonds without any C=C bonds. Furthermore, 
the combustion of DME does not yield any toxic byprod-
ucts. DME proves to be an economically feasible circular 
 H2 carrier, holding significant potential as an alternative 
fuel (Catizzone et al., 2021). Notably, it serves as an inter-
mediary in the production of dimethyl sulfate, methyl 
acetate, light olefins, and gasoline (Sun et  al., 2014). 
However, while several natural sources can be tapped for 
synthetic DME, recent attention has veered toward its 
production from  CO2 (Catizzone et  al., 2018). Specifi-
cally, the direct hydrogenation of  CO2 for DME produc-
tion has garnered increasing interest. Utilizing renewable 
 H2 and  CO2 to generate DME could represent a sustain-
able route for a green energy provision (Fleisch et  al., 
2012). Hence, harnessing DME as a carbon source for 
fuel and chemical production becomes crucial in curbing 
 CO2 emissions. Within this context, one must consider 
the following aspects of DME:

 (i) Hydrogen storage in DME.
 (ii) Hydrogen release from DME.

This section delves into the catalyst’s role in the conver-
sion process from  H2 to DME and vice versa.
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DME production
DME is typically generated through either a two-step 
process or an indirect method. In the two-step method: 
(i) MeOH is initially produced from  CO2 in one reaction 
chamber (Eq. 6), and (ii) the subsequent step involves the 
dehydration of MeOH into DME in a secondary reactor 
(Eq. 7) (Catizzone et al., 2021).

In addition to reactions (6) and (7), the reverse water–
gas shift (RWGS), which is a significant competitive reac-
tion, leads to the development of  CO2, thereby hindering 
the production of DME (Eq. (8)).

The overall production is limited by the decomposi-
tion of MeOH and/or DME, along with potential side-
reaction pathways. The thermodynamic characteristics of 
DME synthesis closely align with those of MeOH synthe-
sis when  CO2 serves as the initial raw material; DME for-
mation occurs sequentially through MeOH formation. To 
mitigate the thermodynamic constraints of  CO2 conver-
sion and elevate the reaction pressure, efficient conver-
sion of MeOH to DME can be employed by continually 
removing MeOH from the product side of Eq. (7).

For DME production to become a reliable and cost-
effective method for  CO2 hydrogenation (Chen et  al., 
2016), synthesizing MeOH and dehydrating DME need 
to occur in a single step (Eq. 9) (Shen et al., 2000). These 
reaction processes entail synthesizing MeOH and dehy-
drating DME simultaneously.

The impact of temperature and pressure on the con-
version of  CO2 to DME differs between the one-step and 
two-step procedures. In the one-step process, these fac-
tors bear more significance due to MeOH consumption 
through the dehydration reaction (Eq.  9), particularly 
noticeable at low temperatures and high pressures (Chen 
et  al., 2012). Even though the two-step process yields 
exceptionally clean DME without water-related issues, 
the one-pot method is considered a more cost-effective 
 CO2 conversion technique. Developing a suitable cata-
lytic system to support both MeOH production and 
MeOH dehydration is an ongoing issue in one-pot syn-
thesis. Current research primarily concentrates on:

(6)
CO2 + 3H2 ⇄ CH3OH+H2O �H

0
298K = −49.5 kJ/mol

(7)
2CH3OH ⇄ CH3OCH3 +H2O �H

0
298K = −23.4 kJ/mol

(8)
CO2 +H2 ⇄ CO+H2O �H

0
298K = 41.2 kJ/mol

(9)
2CO2 + 6H2 ⇄ CH3OCH3 + 3H2O �H

0
298K = −122 kJ/mol

 i. Developing an efficient multi-functional cata-
lyst capable of simultaneous MeOH synthesis and 
dehydration,

 ii. Enhancing catalyst performance for increased 
DME production,

 iii. Improving catalyst stability under specific reaction 
conditions, and

 iv. Enhancing  CO2 utilization efficiency.

DME and other greener fuels offer substantial eco-
nomic benefits, especially considering the rising demand 
for their low-cost production.

Catalytic activity for one‑step synthesis of DME
The direct  CO2-to-DME hydrogenation method requires 
catalysts capable of efficiently synthesizing and dehy-
drating MeOH while minimizing side reactions such 
as CO production and secondary product generation 
via the RWGS, akin to hydrocarbon production at high 
temperatures (Mondal & Yadav, 2019). Bifunctional and 
hybrid catalysts are distinguished by effectively combin-
ing mixed-oxide(s) and acid site activities for MeOH syn-
thesis and dehydration, respectively. An effective catalyst, 
balancing active metals and acidic sites, is crucial for the 
one-step  CO2-to-DME process, producing MeOH and 
dehydrating it into DME while minimizing CO formation 
via RWGS (Wang et al., 2011; Ye et al., 2019). These cata-
lysts must exhibit high activity for  CO2 hydrogenation to 
MeOH at low temperatures and be water-resistant. Addi-
tionally, low acidity is essential to prevent extra dehy-
dration reactions leading to other by-products. Zeolites 
appear suitable for these purposes due to their numer-
ous acidic sites, water stability, and shape selectivity. To 
optimize the synergy between both functionalities and 
prevent their partial deactivation, controlling the balance 
and distance between the metal and acid sites is vital 
(Mota et al., 2021; Zecevic et al., 2015).

Copper (Cu) can independently activate  CO2 as a 
catalyst. When combined with zinc oxide (ZnO), their 
catalytic activity often increases. ZnO serves multiple 
functions, primarily associated with metal dispersion 
or Cu–ZnO interfaces. Moreover, the creation of  Cuδ+ 
sites activate  CO2 (Catizzone et al., 2021). Incorporating 
an additional component, such as  Al2O3, into the basic 
Cu/ZnO composition results in a traditional ternary 
composition with enhanced thermal and chemical sta-
bility (Wang et  al., 2011). Furthermore, the inclusion of 
 ZrO2, instead of  Al2O3, enhances catalyst stability during 
direct  CO2-to-DME hydrogenation due to Zr’s superior 
water tolerance compared to alumina (Catizzone et  al., 
2018). In the preparation method, Cu/Zn molar ratio, 
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calcination, reduction temperature, and duration can 
significantly affect Cu particle size and dispersion. Solid 
acid catalysts for the metal-oxide phases encompass alu-
mina, alumino-silicates, and molecular sieves. Due to 
its acidity and extensive surface area, γ-Al2O3 is often 
recommended for the atmospheric pressure MeOH-to-
DME dehydration conversion. However, under high reac-
tion pressure, water inhibits the activity of γ-Al2O3. Naik 
et al. reported a hybrid catalyst of γ-Al2O3 and ZSM-5 for 
MeOH synthesis through mechanical mixing (Naik et al., 
2011). At 260 °C and 5 MPa in a fixed-bed reactor, ZSM-5 
demonstrates superior activity to γ-Al2O3 for  CO2 con-
version. According to these results,  Al2O3 is unsuitable as 
an acid catalyst for the one-pot  CO2-to-DME process.

In this regard, zeolites appear to offer the greatest vari-
ability in terms of a greater number of acidic sites, water 
resistance, and shape-selectivity regarding the needed com-
ponent, as above mentioned (Bonura et  al., 2016; Busca, 
2017; Gackowski & Datka, 2020). For one-step synthesis 
of DME, a hybrid catalyst can be combined in two ways. 
The first one is a physical mixture (PM) in which a solid 
acid catalyst and a MeOH synthesis catalyst are merely 
combined, keeping the spatial functions of the two pro-
cesses distinct. The second is an integrated mixture, where 

the catalytically active elements for the two processes are 
positioned purposefully close together to assist the desired 
DME synthesis. Table 2 provides a summary of some of the 
findings related to the direct  CO2 hydrogenation to DME.

The current focus of research lies in developing and 
optimizing catalysts and reactors for direct DME produc-
tion from  CO2 and  H2, aiming to sustain high selectivity 
and stability under high-pressure, and high-temperature 
conditions (Ateka et  al., 2022; Banivaheb et  al., 2022). 
However, despite these efforts,  CO2 conversion and DME 
yield values remain low, typically less than 30%  CO2 con-
version (Bonura et  al., 2021), due to significant kinetic 
and thermodynamic constraints caused by the produc-
tion of water as a side product. Water deactivates both 
the MeOH and acid catalyst centers, underscoring the 
importance of maintaining a dry reaction chamber by 
eliminating water from the reaction environment (Frus-
teri et  al., 2015; Li et  al., 2021). As a result, the most 
effective approach to attain the necessary dry reaction 
environment and significantly enhance the efficiency of 
direct DME synthesis from  CO2 and  H2 involves utilizing 
a dehydration membrane capable of selectively removing 
water in situ while preserving other reaction components 
within the reaction system.

Table 2 Recent investigated catalysts for one-pot  CO2-to-DME process

Catalyst Preparation method Metal‑acid phase 
ratio (wt/wt)

GHSV  (mLg–1
cath

–1) TR; PR (°C; 
bar)

XCO2 (%) YDME (%)
SDME (%)

Refs.

6CuO–3ZnO–1Al2O3/
HZSM-5

Precipitation 
by  Na2CO3 + mechani-
cal mixing

1.5:1 3000 260;30 29 SDME = 65 (Naik et al., 2011)

6CuO–3ZnO–Al2O3/γ-Al2O3 1.5:1 3000 260;30 14 SDME = 57

CuZnAl/Al–Zr–SBA-15 Hydrothermal + physi-
cal mixing

1:1 1500 240;30 22.5 SDME = 73
YDME = 16.5

(Mondal & Yadav, 2022)

CuZnAl/HZSM-5 1:1 1500 240;30 23.5 SDME = 66.5
YDME = 15.7

CZA/HZSM-5 Stepwise precipita-
tion + slurry mixing

Not reported 1440 240;28 25.6 YDME = 17.2 (Fan et al., 2023)

ZrO2-CZA/HZSM-5 YDME = 18.4

CuO–Fe2O3–ZrO2/HZSM-5 Co-precipitation 1:1 1500 260;30 28.4 YDME = 18.3 (Liu et al., 2013)

CuO–ZnO–Al2O3–La2O3/
HZSM-5

Coprecipita-
tion + grinding

2:1 3000 250;30 43.8 YDME = 31.2 (Gao et al., 2013)

(CuO–ZnO–Al2O3 + HZSM-
5)/
MWCNT

Coprecipitation 
in urea/CNT solution

1:1 1800 262; 30 46 YDME = 21 (Zha et al., 2013)

(CuO/ZnO/Al2O3)
Amorphous silica–alumina

Coprecipita-
tion + Core–shell 
encapsulation

8800 240;30 47.1 YDME = 19.9 (Zha et al., 2012)

CuO–ZnO–Al2O3/SAPO-18 Physical mixing 2:1 Not reported 275:30 10 SDME = 68.9
YDME = 14.5

(Ateka et al., 2017)

Hyb–pwd–CuO–ZnO-ZrO2/
MFI

Co-precipitation + 3D 
printing

1:1 1000 260;30 23.6 SDME = 42.6 (Bonura et al., 2023)

Hyb-3D–CuO–ZnO–ZrO2/
MFI 22.8 SDME = 36

Cu/Zn/Al/ZSM-5 Co-precipitation 7500 275;40 35 YDME = 23 (Ereña et al., 2005)

Cu/Zn/Al/γ-Al2O3
40 YDME = 10
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Notably, one-step  CO2 hydrogenation to DME has 
yielded intriguing results in the literature (Azizi et  al., 
2014; Catizzone et al., 2021; Ereña et al., 2005). However, 
there is a pressing need to develop bifunctional catalysts 
that enable large-scale DME production without deac-
tivation. The deactivation of hybrid catalysts primar-
ily from the presence of water and the mobility of metal 
sites, inducing sintering and/or ion exchange with acid 
sites. Future advancements in one-pot  CO2-to-DME pro-
duction should prioritize the creation of novel catalytic 
systems capable of operating at lower temperatures and 
with increased stability for industrial-scale production. 
While the Cu–ZnO catalyst is expected to maintain its 
prominence in the industrial  CO2-to-MeOH step due 
to its superior catalytic activity, stability, and economic 
benefits, the use of FER-type zeolites as acid catalysts in 
MeOH dehydration revealed acceptable water resistance 
albeit deactivation during the one-pot  CO2-to-DME pro-
cess (Bonura et al., 2016, 2017). Enhancing hydrophobic 
sites at high temperature might not resolve the issue; 
instead, an in  situ water removal approach is necessary 
for a highly stable system. Li et al. (2021) demonstrated 
a notable increase in MeOH formation and dehydratioin 
activity by employing  Na+-gated water-conducting mem-
branes (WCM), resulting in a 4- and 10-fold increase. 
Achieving DME yields of up to 54.5% and single-pass 
 CO2 conversion rates of up to 73.4% at 250 °C and 35 bar 
pressure, surpassing the thermodynamic equilibrium of 
the bare MeOH synthesis, has been observed. Addressing 
catalyst deactivation caused by coke accumulation from 
carbonaceous substances is another critical challenge. 
The blockage of zeolite pores due to coke production ren-
ders them inaccessible. Innovative and stable hybrid cata-
lysts are imperative to transition from laboratory-scale 
experiments to industrial operations.

Hydrogen production from dimethyl ether
Various methods have been explored to produce  H2 from 
DME, including partial oxidation, autothermal reform-
ing, and steam or dry reforming. Among these, steam 
reforming (SR) stands out as the most efficient method 
releasing  H2 (Gao et al., 2013; Naik et al., 2011). Due to 
DME’s chemical properties, it facilitates easier reforming 
at relatively low temperature, typically ranging from 250 
to 450  °C, and reformation takes place at low pressure. 
The SR process for DME occurs in two-steps as shown in 
Eqs. 10 to 12.

The first step involves the hydrolysis of DME into 
MeOH:

(10)
CH3OCH3 +H2O ⇄ 2CH3OH �H

o
= +37kJ/mol

The second step is MeOH SR:

The overall SR of the DME reaction is expressed by:

To favor hydrogen release in the endothermic reac-
tion of DME SR, employing high temperatures and low 
pressures is essential from a thermodynamic perspective 
due to the increase in the number of moles (Ledesma 
et al., 2019). The rate-determining hydrolysis step (Eq. 7) 
relies on an acid-catalyzed mechanism and demand 
higher pressures, while SR step (Eq. 8) is metal-catalyzed. 
Besides potential additional side reactions that may occur 
during DME SR, various side reactions, including RWGS 
and DME decomposition, occur based on catalyst char-
acteristics and reaction conditions such as temperature 
and pressure, affecting  H2 production.

Attaining high-yield  H2 necessitates a catalyst that pre-
vents CO, hydrocarbons (HC), and coke formation (Gul 
et al., 2023). Both purity of the produced gas and catalyst 
stability play critical roles in advancing this technology, 
especially for high-purity hydrogen production crucial 
in PEM fuel cells. Given the two-step nature of DME 
SR, effective bifunctional catalysts are vital for achieving 
high DME conversion,  H2 selectivity, and minimizing CO 
(Eq.  13) and HC by-products such as  CH4 (Eq.  14). As 
DME hydrolysis occurs at solid acid catalyst sites, acidic 
surfaces like alumina or zeolite are necessary, whereas 
metallic catalysts (Cu-, Pd-, and Pt-based catalysts) func-
tion as MeOH reformers.

DME SR procedure parameters and catalysts
Bifunctional catalysts comprise metallic sites for MeOH 
reforming and acidic sites for DME hydrolysis (Kim 
et  al., 2017). Typically, the two types of acid catalysts, 
alumina, and zeolite, are used for DME hydrolysis, while 
MeOH reforming occurs over various metallic sites like 
Cu, Pd, Pt, and Ru (Catizzone et  al., 2021; Mota et  al., 
2021). Enhancement of catalytic performance is achieved 
through metal doping, including Ni, Ce, and Fe. The 
bifunctional catalyst determines the DME’s SR process 
(Cui et al., 2022). To consolidate the DME SR results, we 
considered the reaction process, diverse catalysts, varying 
reaction conditions, and catalyst stability. Table  3 sum-
marizes the selected DME SR processes using different 

(11)
CH3OH+H2O ⇄ 3H2 + CO2 �H

o
= +49 kJ/mol

(12)
CH3OCH3 + 3H2O ⇄ 6H2 + 2CO2 �H

o
= +135 kJ/mol

(13)CO2 +H2 ⇄ CO+H2O

(14)CH3OCH3 ⇄ CH4 + CO+H2
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catalysts under varied conditions, and their impacts on 
DME conversion and  H2 production.

Kim et  al. studied the DME reforming by the catalyst 
xCu/γ-Al2O3 with different cu loading (x = 5–15%) allow-
ing H2 production 72–74.08% at 300–375 °C (Kim et al., 
2020, 2022). Wang et  al. (2010) reported the Cu–Ni/γ-
Al2O3 based catalyst for inhibition of sintering Cu par-
ticle by the modified catalyst using Ni. These catalysts 
exhibited improved dispersion of Cu and supressed the 
RWGR. Using physical mixing, Sobyanin et  al. found 
100% DME conversion at 290  °C with heteropoly acid 
(HPA,  H4SiW12O40) supported over γ-Al2O3 and Cu/
SiO2. (Galvita et al., 2001) Faungnawakij et al. tested the 
composite of  CuFe2O4 spinel and γ-Al2O3 for catalytic 
hydrogen production from SR of DME. (Faungnawakij 
et al., 2009) The spineloxides with less reducible Cu spe-
cies had more  Cu1+ species in the reducing atmosphere, 
indicating higher DME SR activity. Cu clusters highly dis-
persed in iron oxide matrix were reduced from the spinel 
structure, and their strong interaction should result in 
high activity and durability. After adding Fe to CuNi/γ-
Al2O3/Al, CO concentration decreased. CuNiFe/g-Al2O3/
Al catalysts with 12.5% Fe content converted DME 100% 
and yielded over 97%  H2 in the microreactor and fixed-
bed reactor (Deng et  al., 2019). They also reported that 
SR of DME activity was affected by acidic catalyst acid 
amount, strength, and site type. With optimal reforming 
temperature at 350–375 °C, γ-Al2O3 mixed with  CuFe2O4 
produced high yeild  H2.and activity was stable and dura-
ble for 25 h (Faungnawakij et al., 2006). Sun et al. exam-
ined that Al and Zr greatly affect catalyst performance, 
including DME conversion,  H2 yield, and CO/CO2 selec-
tivity. The catalyst  CuZnAl0.8Zr0.2O achieves the highest 

DME conversion and  H2 yield across 300-4250C reaction 
temperatures. Long et  al. (2019) showed that over 90% 
DME conversion and  H2yield were achieved after 50  h 
of TOS with 2.17 wt% MgO-modified HZSM-5 and Cu/
ZnO/Al2O3.

The cases emphasize the necessity of gaining a deeper 
understanding of the underlying processes and interac-
tions among the active ingredients in both mixed and 
bifunctional catalysts. Moreover, additional research 
should explore the role that the catalyst’s composition 
and the fundamental factors that govern both activity 
and stability of the catalysts.

Reactor development
Several reactor concepts have been proposed for the 
independent and efficient direct synthesis of  CO2 to 
DME and DME to  H2 (Azizi et  al., 2014; Tavan et  al., 
2013). The direct production of DME gives priority to 
the microstructural and membrane reactor. Microstruc-
tural reactors, often with dimensions around  10–3  m, 
aim to enhance heat and mass transport characteris-
tics (Ateka et  al., 2022). While microstructure reactor 
designs involve either stacking prefabricated foils or uti-
lizing additive manufacturing techniques. Two primary 
concepts for implementing a catalyst in microstructures 
involve packing the catalyst and coating the micro-
channels to improve heat transfer. Alternatively, entire 
reactors can be manufactured from catalytically active 
materials (Peláez et al., 2018). A membrane reactor com-
bines chemical reactions and product separation in a 
single unit, boosting conversion rates (Hamedi & Brink-
mann, 2022) and optimizing thermodynamic equilibrium 
by extracting by-products and achieving higher purity. 

Table 3 Effect of different catalysts and process parameters on DME steam reforming

Catalyst Experimental condition XDME (%) H2 production References

xCu/γ-Al2O3 350–400 °C, 1 atm 95 YH2 = 74.08%, (Kim et al., 2022)

xCu/γ-Al2O3 300–600 °C, 1 atm 100 YH2 = 72%, (Kim et al., 2020)

Cu–Ni/γ-Al2O3 3500C, 1 atm 100 VH2 = 55–70 mmol  g−1  h−1 (Wang et al., 2010)

CuMn2O4/γ-Al2O3 350
oC, 1 atm

71 VH2 = 23–24 mL/min (Faungnawakij et al., 2008)

Cu/SiO2-HPA/γ-Al2O3 290 °C,1 atm 100 YH2 = 74%, (Galvita et al., 2001)

CuFe2O4/ γ-Al2O3 375 °C,1 atm 56.8–99.6 YH2 = 48–97.6 (Faungnawakij et al., 2009)

CuNiFe/γ-Al2O3/Al 400 oC, 1 atm 100 YH2 = 97%, (Deng et al., 2019)

CuFe2O4/ γ-Al2O3 350–425
oC, 1 atm

70–95 VH2 = 55–95 mmol  g−1  h−1 (Faungnawakij et al., 2006)

CuZnAlZr/γ-Al2O3 350–425
oC,1 atm

90–95 YH2 = 85–95%, (Sun et al., 2012)

CuZnAl2O3/HZSM-5 2750C,1.2 atm 40–44 YH2 = 35–43%, (Arteta et al., 2014)

Cu/ZnO/Al2O3
1.55% ZSM-5

200–300 °C,1 atm 570–100 YH2 = 65–96% (Long et al., 2019)

Pd/ZrO2 360–550 °C,1 atm 50–100 YH2 = 31–65 (Ledesma et al., 2011)
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Nonetheless, the integration of porous, organic, or inor-
ganic membranes into reactors poses challenges, often 
necessitating tubular or planar systems to achieve highly 
selective and defect-free membranes.

Future perspectives on DME as a H2 carrier
Direct  CO2 hydrogenation using renewable  H2 to pro-
duce DME is a key technique for integrating renewa-
bles into the chemical and fuel production processes. 
In recent years, significant attention has been directed 
toward developing new catalytic systems for one-pot 
 CO2 hydrogenation to DME, as well as cost-reducing 
approaches such as designing a single reactor unit for 
MeOH synthesis and dehydration.

The direct synthesis of DME usually occurs within 
the temperature range of 200–300  °C and a pressure 
range of 10–50  bar. Optimal operational conditions for 
 CO2 to DME conversion are at 30 bar pressure and tem-
peratures between 270–275  °C (Merkouri et  al., 2022). 
Understanding the differences between bifunctional and 
hybrid catalysts is crucial for advancing one-pot  CO2 
hydrogenation. Bifunctional catalysts combine metal 
and acid active sites, whereas hybrid catalysts lack dis-
tinct catalytic functions. The preparation methods and 
choice of metal/acid precursors significantly impact the 
catalytic performance of the hybrid grains during the 
one-pot  CO2-to-DME process (Mota et al., 2021). Future 
advancements in the one-pot  CO2-to-DME process 
should concentrate on developing new catalytic systems 
operating at lower temperatures and exhibiting higher 
stabilities. The mobility of metal sites and the presence of 
water are the primary causes of hybrid catalyst deactiva-
tion. Innovative methods can help inhibit metal mobility 
and enhance the anchoring of metal particles while main-
taining metal/acid spatial proximity. Cu-based catalysts 
(such as Cu–ZnO) are anticipated to remain the standard 
for the  CO2-to-MeOH step due to their superior activity, 
stability, and economic advantages. Water contributes 
to the deactivation by promoting metal particle mobility 
instead of competitive adsorption. Increasing hydropho-
bicity may not solve this issue, particularly at high tem-
peratures, where adsorption is less favorable. Exploring 
unconventional technologies for in  situ water removal, 
such as membrane reactors, might lead to more stable 
systems.

However, numerous challenges persist in optimizing 
catalysts for the one-pot  CO2 hydrogenation to DME, 
necessitating new laboratory-scale studies to develop 
more innovative and stable hybrid materials. Overall, 
optimizing catalysts for one-pot  CO2 hydrogenation to 
DME remains a considerable challenge requiring further 
research. Laboratory-scale studies are essential for devel-
oping innovative and stable hybrid materials suitable 

for industrial applications. Considering DME’s use as a 
replacement for LPG, especially in China, its storage and 
transport must be feasible.

At a laboratory scale, researchers are studying the 
enhancement of the catalyst performance for releas-
ing  H2 from DME via the SR process. The first DME 
SR was described in the early 2000s, utilizing a cata-
lyst at atmospheric pressure and temperatures ranging 
between 200 and 400 °C.

The focus has been on developing a bifunctional 
catalyst achieved by physically combining metal-based 
(Cu) components with acid-based (γ-Al2O3 or zeolite) 
catalysts. The presence of Cu-based spinal-like struc-
tures significantly influences the DME SR process. 
Maintaining the catalytic properties of DME SR relies 
heavily on the quantity of the doping species. Addition-
ally, the selection of acid functional sites is crucial in 
the hydrolysis of DME. Zeolite-based acid sites offer 
the potential for developing bifunctional catalysts by 
optimizing both chemical and physical properties. 
Therefore, it is imperative to conduct laboratory-scale 
investigations to assess the performance of hybrid sys-
tems under high-pressure conditions, given the need 
for high-pressure  H2 and the ease of separating  CO2/H2 
in such conditions.

Presently, the existing catalyst systems have not 
shown sufficient progress in the industrial production 
of  CO2-to-DME and DME-to-H2. However, a more 
detailed understanding of the reaction mechanism and 
identification of active or spectator species involved 
in the processes of  CO2-to-DME and DME SR are 
required. Despite uncertainties about these processes, 
it is clear that several parameters can be addressed to 
enhance the efficiency of renewable hydrogen storage 
and release.

Formic acid
Formic acid (FA), the smallest carboxylic acid molecule, 
is a colorless, low-toxicity liquid at room temperature 
and atmospheric pressure. With a melting point of 8  °C 
and a boiling point of 102  °C under atmospheric pres-
sure, FA possesses physical properties that facilitate easy 
handling on the ground, allowing safe transportation as a 
liquid through pipelines and tanker trucks (Pérez-Fortes 
et al., 2016; Tian et al., 2015). Industrially, FA is obtained 
as a byproduct of acetic acid production (Yoneda et  al., 
2001), or it can be acquired by hydrolyzing methyl for-
mate, which is produced by carbonylation of MeOH 
with carbon monoxide in the presence of a strong base, 
or by acidolysis of alkali formates (Reutemann & Klec-
zka, 2003). FA is renowned for its high hydrogen stor-
age capacity and the low energy required for hydrogen 
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production. Being a liquid under ambient conditions, it 
is simpler to transport and store than molecular hydro-
gen. Thanks to these characteristics, FA is considered a 
safe and cost-effective hydrogen carrier for transporta-
tion and storage.

Formic acid dehydrogenation
Extensive research has focused on developing catalysts 
for  H2 production from FA. Two potential pathways for 
the catalytic breakdown of FA have been explored. The 
first pathway involves FA dehydrogenation, yielding  H2 
and  CO2 (Eq.  15). This process is thermodynamically 
favorable, endothermic, and exergonic, reducing the risk 
of thermal runaway. Conversely, the gas-generating dehy-
drogenation process is easily facilitated owing to the sig-
nificant entropy change.

FA can undergo another decomposition reaction 
through dehydration, resulting in the production of CO 
and  H2O (Eq. 16). In applications involving hydrogen car-
riers, it is preferable to employ a catalyst that produces  H2 
selectively while inhibiting CO formation. Considerable 
research has focused on developing both homogeneous 
and heterogeneous selective dehydrogenation catalysts to 
prevent CO production. Therefore, the need persists for 

(15)
HCOOH → H2 + CO2 �H = +31.2 kJ/mol

(16)
HCOOH → CO+H2O �H = +29.2 kJ/mol

catalysts capable of selectively yielding  H2 while minimiz-
ing CO output (Kawanami et al., 2017).

Figure 4 displays the standard reaction enthalpies and 
Gibbs free energies for the dehydrogenation and dehy-
dration of FA across different temperatures. In the case 
of dehydration, the reaction enthalpy remains constant 
across various temperatures, whereas the Gibbs energy 
increases with rising temperature. For dehydrogenation, 
the reaction enthalpy (ΔH) decreases slightly at higher 
temperatures, but the Gibbs energy exhibits an increase. 
Dehydrogenation is endothermic, while dehydration 
is exothermic. Although both reactions share similar 
enthalpy values, dehydrogenation displays higher tem-
perature dependence and greater energy content. There-
fore, performing the reaction near the FA boiling point 
maximizes the attainable thermodynamic energy. This 
substantial difference in the Gibbs energy mainly arises 
from one of the products of dehydration products being 
liquid water (Fig. 5).

Formic acid dehydrogenation by homogeneous catalysts
FA dehydrogenation (FAHD) using homogene-
ous systems began in 1967 with the development of 
 IrH2Cl(PPh3)3 by Coffey (Coffey, 1967) . Since then, 
numerous complex catalysts, primarily based on transi-
tion metals, such as Ir (Forster & Beck, 1971), Ru (John-
son et al., 2010; Rodriguez-Lugo et al., 2013), Pt (Paonessa 
& Trogler, 1982; Yoshida et al., 1978), Rh (Forster & Beck, 
1971), and Pd (Wiener et al., 1986), have been reported. 

Ru-7 Ru-8
Ru-9

Ru-10 Ru-11

Ru-12 Ir-3

Ir
N

NHO

O

O

- Na+

Ir-4 Fe-2 Mn-1
Fig. 4 Homogeneous catalysts are used for methanol dehydrogenation
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In 2008, Loges et  al. used commercially available 
 [RuCl2(PPh3)3] (Fig.  3, Ru-13) to perform FADH and 
achieved a high TOF of 417   h−1 after 2  h. (Loges et  al., 
2008) This catalyst’s activity was further enhanced by pre-
treating it with a small amount of DMF, reaching a TON 
of 891 and an initial TOF of 2688  h−1 after 2 h. Fellay et al. 
used hydrophilic Ru-based catalysts generated in situ by 
adding [Ru(H2O)6]2+ (Ru-14) or commercially available 
 RuCl3 with mTPPTS (m-trisulfonated triphenylphos-
phine: L1) (Fellay et al., 2008). With the former catalyst 
system, a continuous system that continuously fed FA 
achieved a TOF of 460   h−1. These reports have spurred 
remarkable progress in the development of Ru catalysts 
for FADH. In 2009, Johnson et al. investigated a series of 
organometallic complexes and reported that commer-
cially available  [RuCl2(DMSO)4] (Ru-15) exhibited very 
high activity for FADH (> 200 ppm CO byproduct), show-
ing a TOF of 18,000  h−1 at 120 °C (Johnson et al., 2010). 
In 2013, Sponhol et  al. (2013) reported a system capa-
ble of decomposing FA into  H2 and  CO2 with excellent 
activity (TON 1,000,000) using a catalyst formed in situ 
from commercially available  [RuCl2(C6H6)]2 (Ru-16) and 
1,2-bis(diphenylphosphino)ethane (dppe: L2). In 2016, 
Pan reported a Ru-PNP pincer complex coordinated with 
a pyridine pincer ligand (Ru-17) (Pan et  al., 2016). This 
catalyst showed high activity in DMSO under relatively 
mild conditions, achieving a TON of 95,000. Further-
more, the presence of amines in the reaction solution 
allowed the catalyst to maintain its activity over the long 
term, achieving a TON of 1,000,000 over 150 h. In 2009, 
Himeda et  al. reported Cp*Ir complex catalysts with 
4,4-dihydroxy-2,2ʹ-bipyridine, (Ir-which is NNʹ-bidentate 

ligand, sparking many subsequent reports on Ir cata-
lysts for FADH (Himeda, 2009). They noted a significant 
increase in catalytic activity upon the introduction of 
electron-donating substituents (Ir-2) such as hydroxyl 
and methoxy groups) into 2,2ʹ-bipyridine. The Cp*Ir-
4DHBP complex (Ir-2) efficiently catalyzed the reaction 
in water, completely converting FA into  H2 and  CO2, 
without generating CO (less than 10  ppm) or requiring 
additives. Additionally, they synthesized an Ir complex 
with an imidazoline ligand (Ir-5) (Wang et al. 2015a; b). 
Under reflux conditions, Ir-4 exhibited a TON of 68,000 
and a TOF of 322,000  h−1 after a 30-min reaction. Wang 
et al. recently developed an Ir complex with a bisimida-
zoline ligand (Ir-6), demonstrating exceptional catalytic 
performance with a TOF of 487,500  h−1 in water. (Wang 
et al., 2015c) In 2020, Kawanami developed a series of Ir 
complexes (Ir-7) with amino-substituted 2,2ʹ-bipyridine 
ligands for high-pressure hydrogen production. (Kawa-
nami et al., 2020) Notably, the Cp*Ir-4DMABP complex 
(Ir-7) substituted with dimethylamino groups, displayed 
outstanding activity even under high-pressure condi-
tions, generating gas pressures exceeding 150 MPa. This 
method of high-pressure hydrogen production from 
hydrogen carriers eliminates the need for mechanical 
compression when utilizing hydrogen gas.

Recently, there has been a surge in reports focusing on 
nonprecious metal-based complex catalysts for FADH. 
Although they typically exhibit lower activities than pre-
cious metal-based complexes, they are gaining attention 
due to their abundance and cost-effectiveness. In 2010, 
Boddien et al. developed an Fe-phosphine catalyst in situ 
by combining  Fe3(CO)12 (Fe-3), 6,6ʹ-phenyl-2,2ʹ:6ʹ,2″-
terpyridine (L3), and  PPh3 (L4), yielding hydrogen with 
an initial TOF of 200   h−1 under visible light irradiation 
for 1  h (Boddien et  al., 2010). The following year, their 
group reported FADH using a complex derived from 
Fe(BF4)2∙6H2O and the tetradentate ligand  PP3 (Fe-
3 + L5) (Boddien et al., 2011). In 2013, Zell et al. (2013) 
reported an Fe-based pincer complex (Fe-4) that cata-
lyzes FADH under mild conditions in the presence of 
 Et3N, achieving a TON of 100,000. Ni-based metal com-
plexes have also been reported by Enthaler et  al. (2015) 
, who developed a Ni catalyst with a PCP pincer ligand 
(Ni-1) and achieved a TON of 626 after 3 h in the pres-
ence of propylene carbonate (PC) and dimethyl-n-octy-
lamine (n-OctNMe2). Effective homogeneous catalysts 
for the dehydrogenation of FA are generally categorized 
as iridium and ruthenium complexes with ligands like 
phosphine, bipyridine, N,Nʹ-bidentate ligands, Cp*, and 
pincers. Notably, there has been a recent development 
in immobilized catalysts containing homogeneous com-
plexes on various substrates have been reported.
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Compared with other  H2 carriers, the unique produc-
tion of  H2 from FA is attributed to its negative Gibbs 
free energy of dehydrogenation, driving the reaction to 
yield gaseous  H2 and  CO2 from liquid FA owing to its 
substantial reaction enthalpy (Iguchi et  al., 2016a, b). 
Currently, high pressures can be produced from the gen-
erated gas; the maximum pressure, determined by the 
Gibbs energy, reaches 225 MPa (Iguchi et al., 2016a, b). 
There have been various reports on producing high-pres-
sure gases through FA dehydrogenation. In 2008, Fellay 
et  al. utilized a high-pressure NMR tube and reported 
the generation of a high-pressure gas at 75  MPa from 
FA using [Ru(H2O)6]2+ (Ru-14) or a  RuCl3 complex 
with tris(metasulfonate phenyl) phosphine (mtppms) 
as the ligand (Fellay et al., 2009). Subsequently, in 2016, 
Czuan et al. () employed  IrCl3 and N,N-bidentate ligands, 
achieving high-pressure gas production up to 15  MPa 
with  IrCl3 + IndH (Ir-IndH). In the same year, Papp et al. 
also reported the production of 14  MPa of high-pres-
sure gas from FA using the cis-mer-[IrH2Cl(mtppms)3] 
(mtppms = monosulfonated triphenylphosphine Na-salt) 
(Papp et al., 2016). In 2017, Broicher et al. (2017) reported 
the production of 6 MPa at 160 °C in the presence of irid-
ium catalyst with bipyridine-based conjugated micropo-
rous polymer (CMP), whereas the CO concentration 
increased to 152  ppm in the generated gas. Guan et  al. 
(2017) generated 25.8  MPa of high-pressure gas using 
arene-Ru (II) catalysts in 2017. In 2018, Boncella et  al., 
reported the high-pressure gases 19  MPa of high-pres-
sure gas in the presence of Ru complex with tBuPONOP 

(tBuPONOP = 2,6-bis(ditert-butylphosphinito)pyridine)) 
pincer ligand (Nickolas et al., 2017), and Geri et al. (2018) 
also reported the production of 19  MPa from FA using 
various Ru complexes with N,Nʹ, and N-bispyridylisoin-
doline as ligands (Ru-Ind-OTf). Kawanami published 
several reports on the generation of high-pressure gas 
from FA. In 2016, they first achieved 120  MPa of high-
pressure gas from 20 M FA using a Cp*Ir complex con-
taining a 4,4ʹ-2,2ʹ-bipyridine ligand (Cp*Ir-4DHBP), 
etc. (Iguchi et  al., 2016a, b). Moreover, they observed a 
decrease in the pressurization rate during gas production 
under high pressure, indicating catalyst degradation via 
ligand detachment under high-pressure reductive con-
ditions. They later updated this report by generating a 
maximum pressure of 157  MPa using Cp*Ir complexes 
(Cp*Ir-4DMABP) (Fig.  6) (Kawanami et  al., 2020). They 
also reported Ir complexes with ortho-substituted bipy-
ridine ligand (Cp*Ir-6DHBP) can generate high-pressure 
gas, but rapid decomposition compared to the Ir complex 
with para-substituted one was occur under high-pres-
sure conditions (Iguchi et  al., 2017). The achieved pres-
sure by formic acid generation using various reported 
catalyst is summarized in Figs. 7 and 8.

The dehydrogenation of FA generates high-pressure 
gas, functioning as a chemical pump for releasing hydro-
gen from liquid-phase hydrogen carriers at elevated 
pressures. The use of FA can bypass the hydrogen com-
pression process at stations, leading to cost reductions 
by eliminating multiple steps compared to compressor-
based methods (Dutta et  al., 2022; Müller et  al., 2017) . 

Ru-13

Ir-5 Ir-6 Ir-7

Ru-14 L2Ru-15 Ru-16

Ru-17 Ir-2

Fe-3 L3 L4 Fe-4 L5 Fe-5 Ni-1

L1

Fig. 6 Selected Ru, Ir, Fe, and Ni complexes as catalysts for FADH
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However, some drawbacks arise from the simultaneous 
production of hydrogen and carbon dioxide during FA 
dehydrogenation, necessitating their separation to attain 
high-purity hydrogen, especially in hydrogen fuel cell 
vehicles, which require hydrogen purity above 99.97% 
with minimal impurities, maintaining CO content below 
0.2  ppm. (Standardization, 2019) Several gas separation 
methods exist, including temperature swing adsorption 

(TSA), pressure swing adsorption (PSA), membrane 
separation, and amine-based carbon dioxide separation. 
Yet, TSA and PSA result in substantial hydrogen loss, 
membrane separation lacks feasibility under high pres-
sure, and amine-based separation risks contaminating 
hydrogen, reducing its purity. Notably, catalyst-driven 
processes exclusively yield high-pressure gases of hydro-
gen and carbon dioxide from FA, enabling deep cryo-
genic separation methods under high pressure to achieve 
hydrogen purification up to 96% and a recovery rate 
exceeding 99% for liquefied carbon dioxide, preventing 
any loss (Figs. 9, 10) (Iguchi et al., 2016a, b).

The unique properties of high-pressure gas facilitate the 
exclusive use of FA, not only for producing high-pressure 
hydrogen but also for recovering liquefied carbon diox-
ide. However, despite the advantages of high-pressure 
gases, challenges have emerged. While the dehydrogena-
tion rate of gaseous FA remains independent of pressure, 
the reaction rate for liquid or aqueous FA solutions is 
pressure sensitive. For instance, at 0.1 MPa, 10 MPa and 
30 MPa conditions, the reaction rate drops to 1/4 when 
using a 8 M aqueous FA solution (Iguchi et al., 2016a, b). 
Consequently, measures like increasing catalyst amounts 
or enlarging the reaction vessel become necessary to 
maintain the space velocity in FA dehydrogenation.

Formic acid dehydrogenation by heterogeneous catalysts
Research into the decomposition of FA using heterogene-
ous catalysts commenced in the 1930s. Early studies did 
not focus much on optimizing catalysts or considering 
byproducts such as CO (Grasemann & Laurenczy, 2012). 
Initially, the reaction was studied in the gas phase, above 
the boiling point of FA (> 101 °C). Hence, there is a press-
ing need for liquid-phase FADH heterogeneous catalysts, 
leading to an ongoing search for optimal catalysts (Zhong 
et al., 2018a, b; Zhu & Xu, 2015).

Pd-based catalysts exhibit the highest activity for 
FADH. Pd demonstrates greater resistance to CO pro-
duction than other metals, exhibiting high hydrogen con-
version rates and selectivity. Pd/C, a widely used catalyst, 
can be industrially synthesized on a large scale. How-
ever, the performance of Pd/C in FADH is affected by the 
preparation method and Pd particle size (Jeon & Chung, 
2017; Kim & Kim, 2019). Alloy catalysts incorporating a 
second metal to enhance heterogeneous and core–shell 
catalyst performance have also been reported. Wang 
et  al. (2018) reviewed numerous bimetallic, trimetallic, 
and core–shell catalysts.

The activation energies for FA dehydrogenation using 
bimetallic and acid-metal heterogeneous catalysts are 
generally low, facilitating reactions at room temperature 
with these catalysts (Zhong et al., 2018a, b). For instance, 
by alloying Pd with Ag, and Au, its activity is maintained 

Fig. 7 Example of the time course of generated pressure by FADH 
in the presence of Cp*Ir-4DMABP at 80 °C using Cp*Ir complexes. 
(Kawanami et al., 2020).  (Reprinted from Kawanami et al. Copyright 
2023, American Chemical Society

Fig. 8 Reaction temperature vs. achieved pressure from the formic 
acid dehydrogenation using selected catalysts. Selected data are 
shown as follows: red filled circles referred from (Iguchi, et al., 2016a, 
b; Kawanami et al., 2020), blue filled diamond referred from (Fellay 
et al., 2009), green filled triangle referred from (Papp et al., 2016), 
yellow square is referred from (Czaun et al., 2016), and black crosses 
are referred (Broicher et al., 2017; Zhong et al., 2017)
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while CO-induced catalyst poisoning is prevented. Xing 
et al. synthesized a series of Pd–Au/C catalysts with vari-
ous atomic ratios, demonstrating exceptional activity 
(TOF of 6634  h–1) for  Pd0.69Au0.31/C at room temperature 
(Xing et  al., 2019). Lu et  al. developed a catalyst featur-
ing Pd–Cr(OH)3 nanoparticles on amine-functionalized 
mesoporous silica supports, achieving a 100% FA conver-
sion rate and a TOF of 3112  h–1 (Ding et al., 2023). In a 
trimetallic system, Jiang et  al. reported a CoAuPd alloy 
supported on carbon exhibiting a TOF of 80   h–1 under 
ambient conditions without additives (Wang et al., 2013).

In the midst of these advancements, Zhong et al. (2017) 
utilized Pd/PDA-γGO (PDA = phenylenediamine) as a 
catalyst in the dehydrogenation of FA, producing high-
pressure gas up to 36  MPa by employing an aqueous 

solution of FA and sodium formate in a 1:1 ratio. As far as 
our knowledge extends, this stands as the sole record of 
high-pressure gas generation from FA using a solid catalyst. 
However, the more active PdAu/PDA-γGO, while capable 
of generating high-pressure gas, exhibits a drawback: the 
amines supported on the γGO surface convert into amides 
or carbamic acid in the presence of high-pressure carbon 
dioxide, consequently reducing its activity (Zhong et  al., 
2018a, b). Hence, adapting it to a high-pressure hydrogen/
carbon dioxide separation process becomes challenging. 
The activation energy required for the dehydrogenation of 
FA using solid catalysts is lower than that using homogene-
ous catalysts. Nonetheless, solid catalysts prove unsuitable 
for generating high-pressure gas.

Fig. 9 Selected Ru and Ir catalyst for the high-pressure generation by FADH

Fig. 10 Phase behavior of the generated gas from FADH at each temperature. a 0.1 MPa and 35 °C, b 30 MPa and 35 °C, c 30 MPa and − 10 °C 
(Iguchi et al., 2016b)  (Reprinted with permission from Kawanami et al. Copyright 2023, John Wiley and Sons)



Page 17 of 26Ono et al. Sustainable Energy Research            (2024) 11:9  

CO2 hydrogenation into formic acid
FA is produced via the two-electron reduction of  CO2 dur-
ing hydrogenation reduction (Eq. 17). Homogeneous com-
plex catalysts for this process have been reported since 
1976 when Inoue et al. utilized phosphine-based complexes 
of Ni, Ru, Rh, Pd, and Ir (Inoue et al., 1976).

This gas-phase reaction is entropically unfavorable. 
However, in a solvent, the thermodynamics of the reac-
tion change, making the reaction slightly exergonic in 
solvents such as water (Eq. 18).

The inclusion of a base further amplifies the exergonic 
nature of the reaction. Several studies have documented 
the creation of formate salts by employing bases in  CO2 
hydrogenation. This has led to reversible cycles involving 
the storage and release of  H2 using bases (Sordakis et al., 
2015). Yet, when bases are employed, the resulting for-
mate salts necessitate neutralization with an acid to pro-
duce FA, adding extra steps to the process. Consequently, 
achieving FA directly from  CO2 is preferred. However, 
there are limited reports on the synthesis of FA without 
utilizing bases.

An enormous number of reports about FA synthesis 
using transition metal complexes are published, and the 
FA and formate synthesis from  H2 and  CO2 have been 
reviewed by many research groups (Alvarez et al., 2017; 
Johnson et  al., 2010; Leitner, 1995; Wang et  al., 2015a, 
b) In 1989, Khan et  al. (1989) reported the hydrogena-
tion of  CO2 at a rate of 62.5 mmol/min under 17 bar of 
 H2 and 3  bar of  CO2 using a 0.01  M aqueous solution 
of K[Ru(EDTAH)Cl]2H2O (EDTAH = ethylenediamine-
tetraacetic acid). However, they noted the formation of 
formaldehyde and CO owing to the decomposition of 
FA. Tsai and Nicholas et al. achieved the formation of FA 
at a maximum concentration of 0.18  M using [Rh(nbd)
(PMe2Ph)3]BF4 (nbd = norbornadiene) as a catalyst under 
conditions of 96 bar  H2/CO2 (1:1) at 40 ± 1 °C in wet tet-
rahydrofuran (THF) (Tsai & Nicholas, 1992). In 2004, 
Hayashi et al. reported a TON of 55 using a water solu-
ble Ru catalyst, [(C6(CH3)6)Ru(4,40-dmbpy)(H2O)]SO4 
(dmbpy = dimethoxy-2,2ʹ-bipyridine), under 2.5  MPa 
 CO2/5.5  MPa  H2 (Hayashi et  al., 2004). Additionally, 
Moret et al. reported a TON of 74 and an FA concentra-
tion of 0.2  M in water under conditions of 20  MPa  H2/
CO2 (3:1) (Moret et al., 2014). They found that the use of 
DMSO as the solvent increased the TON to 750. Also, Lu 
et al. (2016) in 2016 reported a TOF of 13,000  h–1 under 
50 bar  H2/CO2 (1:1) using an Ir catalyst to hydrogenate 

(17)
CO2

(

g
)

+H2

(

g
)

→ HCOOH(l) �G
◦298K = 32.0 kJ/mol

(18)
CO2(aq)+H2(aq) → HCOOH(aq) �G

◦298K = −4 kJ/mol

 CO2 to FA in an aqueous medium. However, the FA con-
centration was low (0.005  M). Increasing the pressure 
to 76 bar exceeded the TON of 10,000, and the FA con-
centration reached 0.117  M. Tossaint et  al. (2022)  was 
achieved high TOF numbers of 1,100,000  h−1 in the pres-
ence of Ru-PNP pincer complex and showed the activa-
tion energy of  CO2 hydrogenation of 65 kJ/mol. Rohmann 
et al. (2016) demonstrated that [Ru(acriphos)(PPh3)(Cl)-
(PhCO2)] (acriphos: 4,5-bis(diphenylphosphino)acridine) 
catalyzes the hydrogenation of  CO2 to FA under 80  bar 
 H2/CO2 (1:1) at 60 °C in DMSO, reaching a TON of 1094 
(0.09 M FA) after 16 h. Interestingly, a solvent mixture of 
5 vol.%  H2O/DMSO enhanced the TON to 4200 (0.33 M 
FA). The specific water concentration is crucial, as low 
or high concentrations adversely affect the yield. Den-
sity functional theory (DFT) calculations revealed the 
favorable effects of water molecules and suggested the 
thermodynamic stabilization of FA. Repeating this exper-
iment in the presence of acetic acid buffer  (CH3COOH/
CH3COONa 1:1, pH 4.75) nearly quadrupled the FA con-
centration to 1.27 M, achieving a TON of 16,310. West-
hues et al. recently demonstrated that [Ru(N-triphosCy)
(tmm)] (N-triphos = N,N,N-tris(dicyclohexyl-phosphi-
nomethyl)amine, tmm = trimethylmethane), which con-
tains a sterically demanding cyclohexyl group, catalyzes 
the hydrogenation of  CO2 in the presence of Al(OTf)3 
(OTf = trifluoromethanesulfonate) as a Lewis acid addi-
tive (Westhues et  al., 2019). Under 120  bar  H2/60 ℃ in 
MeOH/dioxane (3:1) mixture saturated with  CO2, FA 
was formed, which was then converted to methyl formate 
with a maximum TON of 9,542. ILs containing basic ani-
ons are beneficial for efficient  CO2 hydrogenation under 
base-free conditions. In 2020. Weilhard et  al. (2020) 
reported the use of a Ru catalyst in 1-butyl-3-methylim-
idazolium acetate (BMIM-OAc) IL, serving as a buffer-
ing medium for  CO2 hydrogenation. The IL stabilized 
the pH and prevented catalyst deactivation, whereas the 
acetate counter anion improved the selectivity for FA 
synthesis. Using 5 vol.%  H2O/DMSO as the solvent under 
60 bar  H2/CO2 (1:1) at 70 °C, they reached a TOF of 4520 
after 72 h. Additionally, in 2021, using the same IL as the 
solvent and a Ru-CNC pincer complex as the catalyst, 
with the addition of Sc(OTf)3 as a cocatalyst, Weilhard 
et  al. achieved a  CO2 hydrogenation TON of 126,000 
and TOF of 22,000   h–1, with a final FA concentration of 
0.36 M. (Weilhard et al., 2021) Similarly, in 2023, Hu et al. 
developed an immobilized catalyst for FA hydrogena-
tion/dehydrogenation by supporting Ir(COD)Cl(PPh3) 
(COD = cyclooctadienyl) on polymerized triphenylphos-
phine KAPs(Ph-PPh3) (KAPs = knitting aromatic poly-
mers) (Hu et al., 2023). Hydrogenation/dehydrogenation 
was performed using KAPs(Ph-PPh3-Ir) as the dissolved 
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homogeneous catalyst and 1-ethyl-3-methylimidazolium 
chloride ([EMIM]Cl) as the solvent. Bases such as DBU 
are known for  CO2 hydrogenation, yet ionic liquids have 
a similar effect. With BMIM-OAc, a maximum TON of 
53,832 (21 h) was achieved. Firstly, ILs do not evaporate, 
facilitating easy distillation of the produced FA. Distilla-
tion with [EMIM]Cl resulted in 99.5% FA. Furthermore, 
no performance degradation was observed after 5 recy-
cling (Fig. 11).

Formic acid hydrogen storage and release system
In 1978, Williams et  al. (1978) proposed a process for 
hydrogen storage and release that reversibly converts 
FA and  CO2. Several researchers have pursued catalyst 
development to enable this theoretically feasible cycle; 
however, achieving a reversible cycle has proven elusive 
for many. In 2014, Lee et  al. (2014) accomplished FA 
dehydrogenation at TON 106 and TOF 144   h–1 at room 
temperature in water using a Pd/mpg-C3N4 catalyst 
(mpg-C3N4 = mesoporous graphitic carbon nitride). They 
also managed  CO2 hydrogenation in water by incorpo-
rating triethylamine at 150 °C, yet Pd/mpg-C3N4 catalyst 
fell short in facilitating a successful reversible cycle inte-
grating  H2 storage and release. In 2017, Mori et al. (2017) 
explored FA dehydrogenation and  CO2 hydrogenation 
using a Pd/Ag-based catalyst supported on silica. This 
catalyst exhibited a TOF of 631   h–1 for FA dehydroge-
nation and achieved catalytic activity of about 100   h–1 
for  CO2 hydrogenation in a basic aqueous solution. 
Although three cycles of recycling were conducted for 
 CO2 hydrogenation without notable activity decline, tests 
encompassing  H2 storage and release, notably FA dehy-
drogenation, remained unexplored. Zhong et al. proposed 
a hydrogen carrier system for the mutual conversion of 

carbon dioxide and FA using graphene-supported Pd–
Au catalysts. They reported FA dehydrogenation with a 
TOF of 7,180  h–1, producing over 85% potassium formate 
within 2 h of  CO2 hydrogenation, showcasing the poten-
tial of the FA cycle (Zhong, et  al., 2018a, b). Nonethe-
less, actual recycling tests were not executed due to the 
technicalities involved in constructing a hydrogenation/
dehydrogenation cycle, which necessitates adept chemi-
cal engineering techniques. The separation of FA from 
the reaction solution post-hydrogenation, and the isola-
tion of the catalyst from the reaction solution are pivotal, 
prompting numerous attempts to employ easily separa-
ble solid or immobilized catalysts. Despite these efforts, 
successful examples have remained scarce. On the other 
hand, reports have shown successful reversible  H2 cycles 
using homogeneous catalysts. In 2013, Hull et al. (2012) 
proposed a mild-condition reversible hydrogen stor-
age system using a dinuclear Cp*Ir complex catalyst. Ir, 
Rh, and Ru complexes, with proton-responsive ligands, 
facilitate system recycling by adding base  (KHCO3) and 
acid  (H2SO4) before conducting  CO2 hydrogenation and 
FADH, respectively, adjusting pH accordingly. Sorda-
kis et al. (2015) reported an  H2 storage and release cycle 
using bicarbonates in 2015. The catalyst, generated in situ 
with  [RuCl2(mTPPTS)2]2 + mTPPTS (mTPPTS = triph-
enylphosphine trisulfonate), displayed activity in pro-
ducing formate salts via  CO2 hydrogenation and the 
dehydrogenation of formate salts. These reaction systems 
were tested for continuous  H2 storage and release cycles, 
completing five consecutive operations with conversion 
rates of approximately 95% for  CO2 hydrogenation and 
62% for formate salt dehydrogenation.

Yamashita proposed a reversible  H2 production system 
using a Pd–Ag catalyst supported on mesoporous car-
bon (MSC) (Masuda et al., 2018). This catalyst exhibited 
a TOF of 5638   h–1 for FA dehydrogenation and a TON 
of 839 for  CO2 hydrogenation, enabling three reversible 
 H2 storage and release cycles without significant loss of 
activity. Recently, Piccirilli et  al. (2023) demonstrated 
that a Ru-PNP pincer complex was highly active in pro-
ducing FA by  CO2 hydrogenation in the presence of an 
IL. They achieved a TON exceeding 32,000 under 60 bar 
 (CO2:H2 = 1:1) at 80  °C for over 36  h. This catalyst was 
also effective for the dehydrogenation of FA under similar 
IL conditions, yielding a total TON of 11.8 million over 
112  days. They illustrated that by controlling the pres-
sure and temperature, the catalyst system equilibrium 
could shift between hydrogenation and dehydrogenation, 
achieving up to 13 cycles. In 2023, Verron et al. reported 
results for hydrogenation/dehydrogenation reactions 
under base-free conditions, with a TOF of 157   h–1 for 
FA dehydrogenation and 5.4   h–1 for carbon dioxide 

Fig. 11 Recycling of catalyst and ionic liquid in the  CO2 
hydrogenation. (Hu et al., 2023) Reprinted from Hu et al., (2023) 
with permission from Elsevier
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(TON = 92 for 17  h), using a p-coordinated phenoxy 
ruthenium dimer pre-catalyst (Verron et al., 2023). Ver-
ron et al. and Wei et al. successfully developed a CCHC 
system for storing hydrogen as formic acid at ambient 
temperature for several days, with the capability to regen-
erate hydrogen by heating at 90 °C repeatedly. However, 
as the catalyst remains in the formic acid solution, there 
is a risk that FADH process could gradually proceed, 
resulting in the conversion of the generated FA into  H2 
and  CO2. Consequently, removing the catalyst from the 
solution is crucial for extended storage and ensuring 
safe transportation. Recently, Wei et  al. also proposed 
a system that uses esters or amides of FA as CCHCs 
instead of FA. For instance, pincer-type Ru complexes 
have shown the capability of producing hydrogen with 
a relatively high TOF (8,376   h–1) under basic conditions 
from methyl formate. Moreover, under basic conditions, 
they established a hydrogen storage/production system 
from  CO2 + amines or amino acids (morpholine, lysine, 

etc.) and FA amides using Mn and Fe pincer-type com-
plexes, reporting a TOF value of 2,450  h–1 (TON = 29,400 
in 12  h) over 10 cycles (Wei et  al., 2023). While hydro-
gen  (H2) is regulated by ISO 14687-2 and must be puri-
fied to exceed 99.97% with less than 0.1 ppm of amines 
and under 0.2 ppm of CO, the purity of regenerated  H2 
demands careful consideration. Furthermore, prolonged 
use of a catalyst can lead to its degradation and decreased 
activity, which in turn may increase CO production 
due to the reduced selectivity of the degraded catalyst. 
Although numerous studies have reported that catalysts 
do not produce CO, as analyzed by gas chromatography 
(GC-TCD) with a detection limit of a few ppm, it’s still 
unclear whether the CO content stays below 0.2  ppm. 
For example, a homogeneous Ir catalyst (Cp*Ir-4DABP), 
which is highly active for FADH, initially produces CO at 
a concentration of 1.6 ppm. However, this concentration 
gradually decreases to 0.2 ppm or lower after a few hours, 
as observed. (Sawahara et al., 2004) (Figs. 12, 13).

p-coordinated phenoxy ruthenium
dimer pre-catalyst

Fig. 12 Neutral carbon hydrogen storage and release in the presence of p-coordinated phenoxy ruthenium dimer pre-catalyst (Verron et al., 2023)  
(Reprinted with permission from Verron et al. Copyright 2023, American Chemical Society)

Fig. 13 Fe promoted partially reversible carbon neutral hydrogen stargate and release cycle using formamide. (Wei et al., 2023). (Reprinted 
with permission from Wei et al. (2023).  Copyright 2023, Springer Nature)
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Although practical applications of  H2 carriers with FA 
or formate are still limited, there are emerging examples, 
such as DENS B.V. in the Netherlands, which is actively 
developing FA batteries. However, their system does not 
include a  CO2 capture system at the present time. There-
fore, the development of an effective  CO2 capture pro-
cess is essential to promote the use of FA as a  H2 carrier 
worldwide. This could be the integration of systems such 
as Cansolv®  CO2 capture system or the KS-1 (or KS-21) 
& KM CDR process. In addition, a simple high-pressure 
gas–liquid separation process can be used to separate 
and purify  H2 and  CO2, although few catalysts are capa-
ble of extracting high-pressure gas from FA.

Conclusions
In this review, we discussed MeOH, DME, and FA as 
organic compounds capable of undergoing repeated 
dehydrogenation/hydrogenation cycles, possessing 
substantial hydrogen storage capacities within organic 
hydrogen carrier systems (CCHC) that interchange 
with  CO2. When considering CCHCs, it is essential 
to contemplate the  CO2 circulation process alongside 
the  H2 storage and  H2 production processes. Among 
MeOH, DME, and FA, MeOH exhibits a higher  H2 stor-
age capacity per mole than FA, and its market price is 
lower than that of FA. However, FA requires a lower 
reaction temperature for  CO2 synthesis and dehydroge-
nation, making it seemingly more profitable. Moreover, 
FA’s capacity to generate high-pressure gases during FA 
dehydrogenation is significant as it facilitates the sub-
sequent cryogenic separation of  H2 and  CO2. There is 
a wealth of reports on technology capable of regener-
ating FA by utilizing separated liquefied  CO2, and cur-
rently, FA seems to hold advantages for use as a CCHC. 
Looking ahead, we anticipate that advancements in  H2 
energy technologies will lead to more practical applica-
tions, with reports suggesting MeOH and DME as com-
mercially viable  CO2 circulation  H2 carriers.
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