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ORIGINAL RESEARCH

Optimization of the distribution of wind 
speeds using convexly combined Weibull 
densities
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Abstract 

This paper presents a new approach for the determination of the wind speed distribution based on wind speed data. 
This approach is based on the fact that, in general, wind speed distributions restricted to seasons of year or months 
are different. Therefore, instead of one Weibull density function, a convex combination of Weibull density functions is 
considered for a calendar year. This model improves the maximum likelihood of the estimated wind speed distribu-
tion. Numerical results including a Kolmogorov–Smirnov test are given for a site at Jamaica. Numerical comparisons 
are carried out for different sites and various known methods for the estimation of the wind speed distribution.
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Introduction
For the forecast of the annual revenue of wind power sta-
tions, one needs a good estimate of the probability distri-
bution of wind speeds (compare also Wang et al. 2016b; 
Zhao et  al. 2016; Sohoni et  al. 2016a). By default, one 
generally works with a Weibull probability density func-
tion (PDF) for wind power potential calculations (e.g. see 
Hennessey 1977; Bowden et  al. 1983; Genc et  al. 2005; 
Sohoni et al. 2016b). Quite often, such an estimated PDF 
leads to an incorrect prediction of the produced energy 
so that additional costs may occur (e.g. see Tye et  al. 
2014). The use of only one Weibull PDF seems to be prob-
lematic, and at special sites, e.g. the wind farm Chungtun 
located at a small island in Taiwan Trait (see Liu et  al. 
2014 for details), a bimodal mixture Weibull PDF has 
shown to be more useful (see also Jaramillo and Borja 
2004). Other approaches such as the truncated normal-
Weibull PDF, the mixture Gamma–Weibull PDF and the 
mixture truncated normal PDF are known from the spe-
cial literature (e.g. see Chang 2011; Akpinar and Akpinar 
2009; Carta and Mentado 2007; Wang et al. 2016a; Tian 

Pau 2011; Kollu et al. 2012). Better PDF estimates can be 
expected, as proposed by Bischoff and Jahn (2016), using 
convex combinations of different Weibull PDFs. The pre-
sent paper extends these investigations in such a way that 
monthly distributions are taken into account. This leads 
to an improvement of the estimate, which is achieved by 
a high numerical effort for the solution of a constrained 
optimization problem with a highly nonlinear objective 
function.

The goal of this paper is to present this new approach. 
This method is based on a highly nonlinear optimization 
problem, which can be solved by standard algorithms of 
numerical smooth optimization. Since this approach uses 
much more parameters than the known methods, one 
gets an improved resulting PDF of wind speeds.

This paper is organized as follows: the next section 
describes preliminaries, and then, convex combina-
tions of Weibull PDFs are investigated. The algorithmic 
approach is presented in the fourth section followed by 
numerical results and a Kolmogorov–Smirnov test. In 
the last section, numerical comparisons are carried out 
for known estimation methods applied to different sites.
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Preliminaries
Let the random variable V describe the wind speed (in m/s) 
at an arbitrary site of a wind farm. The PDF of V is very 
often assumed to be a Weibull density function fk ,c given as

where k > 0 denotes the so-called Weibull form parameter 
and c > 0 denotes the Weibull scale parameter in ms  (com-
pare also Rinne 2008).

In general, the Weibull PDF is estimated on the basis 
of wind speed forecasts. For instance, for every hour per 
year one uses a forecast vi with i ∈ {1, . . . , 8760}. Then, 
these data are used for the determination of the Weibull 
parameters k and c (e.g. see Gupta et al. 1998). It is out-
lined by Akdağ and Dinler (2009) that there are different 
methods for the computation of these parameters. We 
restrict ourselves to the maximum likelihood estimation, 
which estimates the parameters k and c in such a way 
that the data are generated by the corresponding dis-
tribution with maximal probability. From a mathemati-
cal point of view, one solves the nonlinear optimization 
problem

where one uses only positive values vij with j ∈ {1, . . . , n} 
for some n ∈ {1, . . . , 8760}. So, wind speeds of the type 0 
m/s are dropped.

The maximal solutions of the optimization problem (1) 
are the so-called maximum likelihood estimators of the 
two Weibull parameters. For simplification, one consid-
ers the logarithm of the objective function of problem 
(1), i.e. one maximizes

As an example, Fig. 1 shows the histogram of measured 
wind speeds and the corresponding Weibull PDF, which 
is computed using the maximum likelihood estimation 
for site 1 (see Table 1 for details).

The standard Weibull PDF is certainly not appropriate 
for site 1. This already shows the known fact that a Weibull 
PDF is not always the best choice. Wind power potential 
calculations require a better approximation of the PDF.

The standard Weibull approach has the following 
disadvantages:

1.	 The data of wind speeds v1, . . . , v8760 are ordered in 
time. This ordering is not considered in problem (1). 

fk ,c(v) :=
{

0 if v < 0
k
c

(

v
c

)k−1
e−( vc )

k
if v ≥ 0,

(1)max
k ,c>0

n
∏

j=1

fk ,c(vij ),

(2)ln

n
∏

j=1

fk ,c(vij ) =
n

∑

j=1

ln fk ,c(vij ).

Therefore, the structure of the wind profiles is not 
completely used.

2.	 If there are wind speeds of the form vi = 0 for some 
i ∈ {1, . . . , 8760}, then this information is unused in 
problem (1). This leads to an incorrect estimate of the 
PDF.

These disadvantages may be corrected with convex com-
binations of Weibull PDFs, which are discussed in the 
next section.

For sites in the Caribbean, it is well known (com-
pare Wang 2007) that mean wind speeds have two local 
maxima in summer and winter and two local minima in 
fall and spring. Figure  2 illustrates monthly mean wind 
speeds for sites 1 and 2 given in Table 1. Based on these 
observations, it certainly makes sense to incorporate 
monthly distributions into an approach with convexly 
combined Weibull PDFs. This leads to an significant 
improvement of the PDF for difficult sites.
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Fig. 1  Histogram of the measured wind speeds with Weibull PDF at 
site 1 (discretization by 0.3 m/s)

Table 1  Characteristics of three sites

Site 1 Site 2 Site 3

Geographical coordinates

 Latitude 18.504 21.42028 26.35561

 Longitude − 77.9125 − 77.8475 127.76763

Country Jamaica Cuba Japan

Characteristics of data sets

 Time period 2011/9/1 2011/9/1 2011/9/1

Until Until Until

2016/9/1 2016/9/1 2016/9/1

 Mean (m/s) 3.643 3.985 5.061

 Variance (m2/s2) 4.159 2.106 4.390

 Standard deviation (m/s) 2.039 1.451 2.095
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Convex combinations of Weibull PDFs
Taking the temporal order of the data into account, one 
can consider (seasonal or) monthly wind speeds. Conse-
quently, for every month of a year the Weibull PDF is esti-
mated with the maximum likelihood method. Then, we 
consider a convex combination of these 12 Weibull PDFs, 
i.e. we formulate a PDF f̄

�̄,k̄ ,c̄ for the whole year with

Here we have �̄ := (�1, . . . , �12), k̄ := (k1, . . . , k12) , 
c̄ := (c1, . . . , c12) with kj , cj > 0, �j ∈ [0, 1] for all 
j ∈ {1, . . . , 12} and 

∑12
j=1 �j = 1. The coefficients 

�1, . . . , �12 can be chosen as quotient of the number of 
days per considered month and the number of days per 
year. Since wind speeds with 0 m/s are possible, we con-
sider an exponential PDF as a special Weibull PDF f1,c0 
with k0 = 1, c0 > 0 and

This special Weibull PDF is then added to the con-
vex combination of the 12 PDFs so that we investigate 
the new convex combination f̃

�̃,k̄ ,c̃
 with �̃ := (�0, �̄), 

c̃ := (c0, c̄) where c0 > 0, �j ∈ [0, 1] for all j ∈ {0, . . . , 12} , 
and 

∑12
j=0 �j = 1. This new convex combination is then 

given by

f̄
�̄,k̄ ,c̄(v)

:=
12
�

j=1

�j fkj ,cj (v)

=







0 if v < 0
12
�

j=1

�j
kj
cj

�

v
cj

�kj−1
e
−( v

cj
)
kj

if v ≥ 0.

f1,c0(v) =
{

0 if v < 0
1
c0
e
− v

c0 if v ≥ 0.

An example of such a convex combination is illustrated 
in Fig.  3.

If we apply the maximum likelihood method to the 
convex combination (3) of Weibull PDFs with the loga-
rithmic simplification to Eq.  (2), we get the following 
nonlinear optimization problem

where ǫ, δ > 0 are given lower bounds, k0 := 1 and h0 
equals the relative frequency of the wind speeds with 0 
m/s. In problem (4), the following adaptations are already 
modelled:

1.	 The original objective function appears in a logarith-
mic form.

2.	 All observed wind speeds are taken into account 
including wind speeds with 0 m/s.

(3)

f̃
�̃,k̄ ,c̃

(v)

:=
12
�

j=0

�j fkj ,cj (v)

=







0 if v < 0
12
�

j=0

�j
kj
cj

�

v
cj

�kj−1
e
−( v

cj
)
kj

if v ≥ 0.

(4)

max

8760
∑

i=1

ln

12
∑

j=0

�j
kj

cj

(vi

cj

)kj−1
e
−(

vi
cj
)
kj

subject to the constraints
�j ≥ 0 ∀ j ∈ {0, . . . , 12}
kj ≥ ε ∀ j ∈ {1, . . . , 12}
cj ≥ δ ∀ j ∈ {0, . . . , 12}
12
∑

j=0

�j = 1

�0 = c0h0
(�̃, k̄ , c̃) ∈ R

13 × R
12 × R

13,
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Fig. 2  Illustration of the monthly mean wind speeds for the Carib-
bean sites 1 (red curve) and 2 (blue curve)
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Fig. 3  Example of a convexly combined PDF (3) with 
�̃ = (0.1, 0.5, 0.4, 0, . . . , 0), k̄ = (2, 4.5, 1, . . . , 1) and 
c̃ = (5, 2.5, 8, 1, . . . , 1)
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3.	 The positivity of the parameters kj ( j ∈ {1, . . . , 12} ) 
and cj ( j ∈ {0, . . . , 12}) is ensured by the lower 
bounds ε and δ.

4.	 The last constraint ensures the right PDF value at 0 
m/s.

The optimization problem (4) is a constrained problem 
with a highly nonlinear objective function. In general, 
methods of continuous optimization determine at most 
local optima. Figure  4 illustrates the graph of the loga-
rithmic objective function (2) for the classical maximum 
likelihood method using wind speeds at Jamaica. This fig-
ure already highlights the complexity of this problem.

Procedure
Based on the remarks of the previous section, we now 
present a procedure for the optimization of the PDF of 
wind speeds.

Instead of the SQP method, one can also choose any 
numerical method of smooth constrained optimiza-
tion. Since the objective function in problem (4) is highly 
nonlinear, one cannot expect that an SQP method finds 
the global solution of this problem. It is known that the 
computed solution strongly depends on the choice of the 
starting point. Therefore, the SQP method, which is not 
a method of global optimization, is repeatedly applied 
to different starting points. Among all computed points, 
one then selects this one with largest objective function 
value. This leads to more realistic numerical results.

Numerical results
The algorithm in the previous section is now applied to 
the wind speeds at site 1. At this site, we have h0 = 0, i.e. 
there are no wind speeds with 0 m/s.

A first investigation uses the special starting vec-
tor with the calculated monthly parameters �j, kj and cj 
( j ∈ {1, . . . , 12}) and sets ℓmax = 1, i.e. the optimization 
problem (4) is only solved with this special starting vec-
tor. The data of this starting vector are given in the col-
umns �̃start, k̄start and c̃start in Table 2. The parameters of 
the exponential PDF are chosen as �0 := 0 and c0 := 1. It 
is interesting to note that the kj and cj Weibull parameters 
( j ∈ {1, . . . , 12}) vary significantly among the months. 
This shows that a convex combination of Weibull PDFs 
certainly makes sense.

The constrained optimization problem (4) is solved by 
the SQP method of the optimization toolbox of MAT-
LAB. The components of the obtained solution vector 
can be found in the columns �̃opt, k̄opt and c̃opt of Table 2. 
The parameters of the exponential PDF are unchanged. It 
is evident from the data in Table 2 that the components 
of the starting vector are quite different from the com-
ponents of the solution vector. This optimization leads to 
an improvement of the value of the objective function by 
7.08% in comparison with the objective function value at 
the starting vector.

In a second investigation, the algorithm is used as 
given in the previous section. Now the parameter 
ℓmax = 45, 000 is chosen, i.e. 45,000 constrained opti-
mization problems are to solve. An average CPU time 
for the execution of the SQP method is 213 s on an 8 
core processor workstation. Table  3 presents the solu-
tion vector. The objective function value at this solution 
is improved by 7.38% in comparison with the objective 
function value at the starting vector given in Table 2. Fig-
ures 5 and 6 illustrate the optimized PDF with different 

Fig. 4  Illustration of the objective function (2) with the variables k 
and c with wind speeds at site 1 and the optimal solution at k = 1.46 
and c = 4.04
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discretization. In Figure 5, the histogram of wind speeds 
is discretized by 0.3  m/s, whereas the discretization of 
0.05 m/s is chosen in Fig.  6. The finer discretization in 
Fig. 6 makes clear why a standard Weibull approach may 
lead to unacceptable results at difficult sites like the one 
at Jamaica. For the optimized PDF, one can easily deter-
mine the cumulative distribution function (CDF) illus-
trated in Fig. 7.

Kolmogorov–Smirnov test
In the previous sections, we have concentrated ourselves 
to a good type of approximation of the CDF of wind 
speeds at a specific site. But now we test the hypothesis 
that the wind speed as random variable has the opti-
mized CDF obtained by the presented algorithm. One 
accepts this hypothesis, if the optimized CDF and the 
empirical CDF are in a certain sense close together. The 
well-known Kolmogorov–Smirnov (KS) test (e.g. see 

D’Agostino and Stephens 1986) can be used for the test of 
this hypothesis.

For the Kolmogorov–Smirnov test, the wind speeds 
(8760 numbers) at site 1 are randomly splitted into two 
data sets with 4380 numbers. The first data set is used for 
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Fig. 5  Optimized PDF of the wind speeds at site 1 (discretization of 
the histogram by 0.3 m/s)
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Fig. 6  Optimized PDF of the wind speeds at site 1 (discretization of 
the histogram by 0.05 m/s)

Table 2  Starting vector and solution vector for ℓmax = 1

�̃start �̃opt k̄start k̄opt
c̃start c̃opt

January 0.085 0.000 1.366 3.400 4.400 10.644

February 0.077 0.311 1.338 3.229 4.253 3.044

March 0.085 0.018 2.068 3.523 4.375 2.733

April 0.082 0.160 1.510 5.669 3.894 6.523

May 0.085 0.010 1.365 3.525 3.790 5.607

June 0.082 0.002 1.276 1.289 4.193 50.000

July 0.085 0.001 1.691 2.405 4.342 11.741

August 0.085 0.186 1.763 5.608 3.945 5.772

September 0.082 0.274 1.268 3.214 3.395 1.806

October 0.085 0.019 1.710 2.827 3.330 3.512

November 0.082 0.000 2.011 4.720 4.491 6.344

December 0.085 0.020 1.818 26.295 4.332 7.201

Table 3  Solution vector for ℓmax = 45, 000

Component �̃opt k̄opt
c̃opt

1 0.012 50.000 1.027

2 0.053 18.575 7.081

3 0.022 8.270 1.468

4 0.100 2.596 4.774

5 0.041 10.272 7.480

6 0.112 5.866 3.290

7 0.000 2.909 4.330

8 0.388 3.052 2.085

9 0.003 1.000 29.918

10 0.011 50.000 1.936

11 0.211 7.252 5.792

12 0.047 8.700 4.199
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the application of the algorithm of this paper. This leads 
to an optimized CDF, which is then compared with the 
empirical CDF of the second data set. Then, the Kol-
mogorov–Smirnov test is applied to these two CDFs. We 
get the result that with a level of significance of 5% the 
hypothesis is accepted that the optimized CDF is the true 
CDF of the second sample. In fact, the calculated test sta-
tistic value 0.017 is less than the critical value 0.021 of the 
Kolmogorov–Smirnov test. This shows that the approach 
of this paper is suitable for a good determination of the 
CDF of wind speeds.

If one works with the whole data set of 8760 wind 
speeds per year, the critical value in the Kolmogorov–
Smirnov test at a level of significance of 5% is given by 
1.358/

√
8, 760 ≈ 0.0145, i.e. for the supremum of devia-

tions below this value, the hypothesis is accepted that 
the calculated CDF is the true CDF of the wind speeds 
as random variable. Assuming the correctness of the 
hypothetical CDF, there is a maximum probability of 5% 
observing test statistic values above the critical value, 
thus rejecting the hypothesis falsely.

If one considers only the classical Weibull CDF and a 
site with a higher number of hours with wind speeds 0 
m/s, then the classical CDF F and the empirical CDF F̂  
have the derivatives F ′(0) = 0 and F̂ ′(0) = h0 (given in 
the algorithm). So, the expression supv≥0 |F(v)− F̂(v)| 
may be greater than the critical value 0.0145 so that the 
tested hypothesis is rejected. The convex combination 
presented in this paper tries to avoid this disadvantage.

Numerical comparisons
The presented new method is now compared with 
other approaches for an estimation of the CDF of wind 
speeds for different wind sites. Table 1 gives some char-
acteristics of three sites (see https://mesonet.agron.
iastate.edu/request/download.phtml?network=CU__
ASOS, https://mesonet.agron.iastate.edu/request/

download.phtml?network=JM__ASOS and https://
me s one t .ag ron . i a s t ate .e du/re que st /dow nlo ad .
phtml?network=JP__ASOS).

For these sites, the PDF of wind speeds is calculated for 
various standard approaches. First of all, the (standard) 
Weibull PDF is determined for the three sites. Moreo-
ver, the bimodal Weibull PDF also known as Weibull–
Weibull PDF and the mixture Gamma–Weibull PDF 
are calculated with the wind speed data. Figures  8, 9 
and 10 illustrate the histograms of the measured wind 
speeds together with the PDFs obtained with the stand-
ard Weibull approach, the bimodal Weibull method, the 
Gamma–Weibull approach and the new method of this 
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Fig. 7  Optimized CDF of the wind speeds at site 1.

Fig. 8  Histogram and estimated PDFs of wind speeds at site 1: 
Weibull PDF (blue curve), bimodal Weibull PDF (green curve), 
Gamma–Weibull PDF (black curve) and convexly combined Weibull 
PDF (red curve)

Fig. 9  Histogram and estimated PDFs of wind speeds at site 2: 
Weibull PDF (blue curve), bimodal Weibull PDF (green curve), 
Gamma–Weibull PDF (black curve) and convexly combined Weibull 
PDF (red curve)

https://mesonet.agron.iastate.edu/request/download.phtml?network=CU__ASOS
https://mesonet.agron.iastate.edu/request/download.phtml?network=CU__ASOS
https://mesonet.agron.iastate.edu/request/download.phtml?network=CU__ASOS
https://mesonet.agron.iastate.edu/request/download.phtml?network=JM__ASOS
https://mesonet.agron.iastate.edu/request/download.phtml?network=JM__ASOS
https://mesonet.agron.iastate.edu/request/download.phtml?network=JP__ASOS
https://mesonet.agron.iastate.edu/request/download.phtml?network=JP__ASOS
https://mesonet.agron.iastate.edu/request/download.phtml?network=JP__ASOS
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paper with ℓmax = 1. All numerical results are listed in 
Table 4.

Figures 8, 9 and 10 and Table 4 show that there are sig-
nificant differences between the computed PDFs. It is 
obvious that the standard Weibull approach is not suit-
able for difficult international sites.

Furthermore, the new method of this paper seems to be 
superior in contrast to the other methods. These discrep-
ancies between the PDFs of the considered approaches 
are certainly smaller, if one investigates wind sites with a 
more uniform PDF.

The Kolmogorov–Smirnov test is carried out for all 
four approaches and all three sites. For every site, the KS 
test statistic value of the convexly combined Weibull PDF 
is the smallest among all used methods, which means 
that the new method determines the best approxima-
tion of the CDF. But this better performance of the new 
approach is reached by a higher numerical effort.

Conclusion
This paper modifies the classical Weibull PDF for wind 
speeds using a convex combination of Weibull PDFs. 
Optimal parameters can be obtained with the maxi-
mum likelihood estimation as an optimal solution of a 
highly nonlinear constrained optimization problem. By 
a monthly splitting of wind data, one gets for site 1 at 
Jamaica an improvement of more than 7% of the objec-
tive function, and with a level of significance of 5%, we 
can accept the hypothesis that the optimized CDF is the 
true CDF of wind speeds. With such an optimized CDF, 
we are able to investigate and analyse wind speeds more 

Table 4  Numerical results for  different sites and  various 
approaches

Site 1 Site 2 Site 3

Weibull PDF

 k 1.459 2.947 2.436

 c 4.044 4.474 5.688

 KS test statistic value 0.084 0.089 0.091

Bimodal Weibull PDF

 �1 0.002 0.397 0.070

 k1 1.294 5.451 2.310

 c1 50.000 3.114 10.095

 �2 0.998 0.603 0.930

 k2 1.869 3.789 3.521

 c2 4.023 5.222 5.299

 KS test statistic value 0.051 0.035 0.019

Gamma–Weibull PDF

 �1 0.765 0.514 0.979

 α 3.353 15.843 8.344

 β 1.268 0.194 0.586

 �2 0.235 0.486 0.022

 k 3.351 4.076 3.746

 c 1.852 5.462 14.424

 KS test statistic value 0.079 0.025 0.020

Convexly combined Weibull PDF

 �1 0.000 0.039 0.065

 k1 3.400 9.134 11.811

 c1 10.644 6.812 5.666

 �2 0.311 0.021 0.100

 k2 3.229 6.800 4.251

 c2 3.044 3.409 7.414

 �3 0.018 0.000 0.087

 k3 3.523 1.000 5.551

 c3 2.733 5.773 3.165

 �4 0.160 0.011 0.052

 k4 5.669 12.425 4.891

 c4 6.523 7.931 2.612

 �5 0.010 0.032 0.045

 k5 3.525 18.863 18.392

 c5 5.607 4.731 4.921

 �6 0.002 0.148 0.000

 k6 1.289 9.826 1.000

 c6 50.000 3.949 3.081

 �7 0.001 0.047 0.121

 k7 2.405 5.713 4.676

 c7 11.741 5.077 5.114

 �8 0.186 0.000 0.005

 k8 5.608 2.828 19.063

 c8 5.772 4.997 11.806

 �9 0.274 0.302 0.358

 k9 3.214 6.298 5.062

 c9 1.806 2.736 5.980

 �10 0.019 0.082 0.025

Fig. 10  Histogram and estimated PDFs of wind speeds at site 
3: Weibull PDF (blue curve), bimodal Weibull PDF (green curve), 
Gamma–Weibull PDF (black curve) and convexly combined Weibull 
PDF (red curve)
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precisely than with the known techniques as shown by 
numerical comparisons.
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Table 4  continued

Site 1 Site 2 Site 3

 k10 2.827 14.432 3.242

 c10 3.512 3.365 13.675

 �11 0.000 0.000 0.139

 k11 4.720 5.270 9.266

 c11 6.344 4.508 4.048

 �12 0.020 0.319 0.004

 k12 26.295 5.217 4.399

 c12 7.201 5.553 5.338

 KS test statistic value 0.017 0.024 0.012
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